基于优化的自动驾驶运动基元自动机

IF 0.7 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
Matheus V. A. Pedrosa, Patrick Scheffe, Bassam Alrifaee, K. Flaßkamp
{"title":"基于优化的自动驾驶运动基元自动机","authors":"Matheus V. A. Pedrosa, Patrick Scheffe, Bassam Alrifaee, K. Flaßkamp","doi":"10.1515/auto-2022-0158","DOIUrl":null,"url":null,"abstract":"Abstract Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.","PeriodicalId":55437,"journal":{"name":"At-Automatisierungstechnik","volume":"71 1","pages":"294 - 300"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization-based motion primitive automata for autonomous driving\",\"authors\":\"Matheus V. A. Pedrosa, Patrick Scheffe, Bassam Alrifaee, K. Flaßkamp\",\"doi\":\"10.1515/auto-2022-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.\",\"PeriodicalId\":55437,\"journal\":{\"name\":\"At-Automatisierungstechnik\",\"volume\":\"71 1\",\"pages\":\"294 - 300\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"At-Automatisierungstechnik\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1515/auto-2022-0158\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"At-Automatisierungstechnik","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1515/auto-2022-0158","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要自动驾驶汽车的轨迹规划可以通过基于基元的方法来解决,该方法将非线性动力系统的行为编码为自动机。在本文中,我们关注的是最优轨迹规划。由于通常必须考虑多个标准,因此必须解决多目标优化问题。对于由此产生的Pareto最优运动基元,我们引入了一种通用自动机,它可以在规划过程中根据优先级标准进行减少或重新配置。我们通过模拟和实验室实验评估了相应的多车辆规划场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization-based motion primitive automata for autonomous driving
Abstract Trajectory planning for autonomous cars can be addressed by primitive-based methods, which encode nonlinear dynamical system behavior into automata. In this paper, we focus on optimal trajectory planning. Since, typically, multiple criteria have to be taken into account, multiobjective optimization problems have to be solved. For the resulting Pareto-optimal motion primitives, we introduce a universal automaton, which can be reduced or reconfigured according to prioritized criteria during planning. We evaluate a corresponding multi-vehicle planning scenario with both simulations and laboratory experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
At-Automatisierungstechnik
At-Automatisierungstechnik 工程技术-自动化与控制系统
CiteScore
2.00
自引率
10.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Automatisierungstechnik (AUTO) publishes articles covering the entire range of automation technology: development and application of methods, the operating principles, characteristics, and applications of tools and the interrelationships between automation technology and societal developments. The journal includes a tutorial series on "Theory for Users," and a forum for the exchange of viewpoints concerning past, present, and future developments. Automatisierungstechnik is the official organ of GMA (The VDI/VDE Society for Measurement and Automatic Control) and NAMUR (The Process-Industry Interest Group for Automation Technology). Topics control engineering digital measurement systems cybernetics robotics process automation / process engineering control design modelling information processing man-machine interfaces networked control systems complexity management machine learning ambient assisted living automated driving bio-analysis technology building automation factory automation / smart factories flexible manufacturing systems functional safety mechatronic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信