非线性耦合Burgers方程的指数三次B样条算法

IF 1.1 Q2 MATHEMATICS, APPLIED
Ozlem Ersoy Hepson, I. Dag
{"title":"非线性耦合Burgers方程的指数三次B样条算法","authors":"Ozlem Ersoy Hepson, I. Dag","doi":"10.22034/CMDE.2020.39486.1727","DOIUrl":null,"url":null,"abstract":"The collocation method based on the exponential cubic B-splines (ECB-splines) together with the Crank-Nicolson formula is used to solve nonlinear coupled Burgers' equation (CBE). This method is tested by studying three different problems. The proposed scheme is compared with some existing methods. textbf{It produced accurate results }with the suitable selection of the free parameter of the ECB-spline function. It produces accurate results. Stability of the fully discretized CBE is investigated by the Von Neumann analysis.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Exponential Cubic B-spline Algorithm for the Nonlinear Coupled Burgers' Equation\",\"authors\":\"Ozlem Ersoy Hepson, I. Dag\",\"doi\":\"10.22034/CMDE.2020.39486.1727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The collocation method based on the exponential cubic B-splines (ECB-splines) together with the Crank-Nicolson formula is used to solve nonlinear coupled Burgers' equation (CBE). This method is tested by studying three different problems. The proposed scheme is compared with some existing methods. textbf{It produced accurate results }with the suitable selection of the free parameter of the ECB-spline function. It produces accurate results. Stability of the fully discretized CBE is investigated by the Von Neumann analysis.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.39486.1727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.39486.1727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

采用基于指数三次B样条(ECB样条)和Crank-Nicolson公式的配置方法求解非线性耦合Burgers方程。通过研究三个不同的问题来检验这种方法。将所提出的方案与现有的一些方法进行了比较。textbf通过适当选择ECB样条函数的自由参数,产生了准确的结果。它能产生准确的结果。通过Von Neumann分析研究了完全离散CBE的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exponential Cubic B-spline Algorithm for the Nonlinear Coupled Burgers' Equation
The collocation method based on the exponential cubic B-splines (ECB-splines) together with the Crank-Nicolson formula is used to solve nonlinear coupled Burgers' equation (CBE). This method is tested by studying three different problems. The proposed scheme is compared with some existing methods. textbf{It produced accurate results }with the suitable selection of the free parameter of the ECB-spline function. It produces accurate results. Stability of the fully discretized CBE is investigated by the Von Neumann analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信