{"title":"非线性耦合Burgers方程的指数三次B样条算法","authors":"Ozlem Ersoy Hepson, I. Dag","doi":"10.22034/CMDE.2020.39486.1727","DOIUrl":null,"url":null,"abstract":"The collocation method based on the exponential cubic B-splines (ECB-splines) together with the Crank-Nicolson formula is used to solve nonlinear coupled Burgers' equation (CBE). This method is tested by studying three different problems. The proposed scheme is compared with some existing methods. textbf{It produced accurate results }with the suitable selection of the free parameter of the ECB-spline function. It produces accurate results. Stability of the fully discretized CBE is investigated by the Von Neumann analysis.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Exponential Cubic B-spline Algorithm for the Nonlinear Coupled Burgers' Equation\",\"authors\":\"Ozlem Ersoy Hepson, I. Dag\",\"doi\":\"10.22034/CMDE.2020.39486.1727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The collocation method based on the exponential cubic B-splines (ECB-splines) together with the Crank-Nicolson formula is used to solve nonlinear coupled Burgers' equation (CBE). This method is tested by studying three different problems. The proposed scheme is compared with some existing methods. textbf{It produced accurate results }with the suitable selection of the free parameter of the ECB-spline function. It produces accurate results. Stability of the fully discretized CBE is investigated by the Von Neumann analysis.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.39486.1727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.39486.1727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An Exponential Cubic B-spline Algorithm for the Nonlinear Coupled Burgers' Equation
The collocation method based on the exponential cubic B-splines (ECB-splines) together with the Crank-Nicolson formula is used to solve nonlinear coupled Burgers' equation (CBE). This method is tested by studying three different problems. The proposed scheme is compared with some existing methods. textbf{It produced accurate results }with the suitable selection of the free parameter of the ECB-spline function. It produces accurate results. Stability of the fully discretized CBE is investigated by the Von Neumann analysis.