M. Silva, M. Cunha, A. Pinho-Ramos, B. S. D. Fonseca, F. Pinho
{"title":"外部硫酸盐和氯化物的加速作用研究钢筋混凝土中抗拉钢的腐蚀","authors":"M. Silva, M. Cunha, A. Pinho-Ramos, B. S. D. Fonseca, F. Pinho","doi":"10.3989/MC.2017.10116","DOIUrl":null,"url":null,"abstract":"Corrosion of the reinforcing steel may cause significant loss of strength of reinforced concrete structures. The study focuses on accelerating such corrosion and examining the degradation of (i) the compressive strength of concrete due to sodium sulfate in a wet atmosphere; and (ii) the flexural strength by a solution of sodium sulfate and sodium chloride. Three types of concrete were used and different beam specimens were reinforced by steel rebars of different diameters (6, 8 and 10mm), part of the beams being pre-cracked. The concrete with least strength allowed higher sulfate penetration along the entire process and the compressive strength increased slightly, possibly due to lower porosity of concrete after contamination. The results of the flexural tests showed decrease of strength in all cases. Pre-cracked beams exhibited smaller influence of porosity of concrete. Beams with 6mm rebars showed the largest loss of strength due to the contamination and corrosion process","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accelerated action of external sulfate and chloride to study corrosion of tensile steel in reinforced concrete\",\"authors\":\"M. Silva, M. Cunha, A. Pinho-Ramos, B. S. D. Fonseca, F. Pinho\",\"doi\":\"10.3989/MC.2017.10116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corrosion of the reinforcing steel may cause significant loss of strength of reinforced concrete structures. The study focuses on accelerating such corrosion and examining the degradation of (i) the compressive strength of concrete due to sodium sulfate in a wet atmosphere; and (ii) the flexural strength by a solution of sodium sulfate and sodium chloride. Three types of concrete were used and different beam specimens were reinforced by steel rebars of different diameters (6, 8 and 10mm), part of the beams being pre-cracked. The concrete with least strength allowed higher sulfate penetration along the entire process and the compressive strength increased slightly, possibly due to lower porosity of concrete after contamination. The results of the flexural tests showed decrease of strength in all cases. Pre-cracked beams exhibited smaller influence of porosity of concrete. Beams with 6mm rebars showed the largest loss of strength due to the contamination and corrosion process\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3989/MC.2017.10116\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3989/MC.2017.10116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated action of external sulfate and chloride to study corrosion of tensile steel in reinforced concrete
Corrosion of the reinforcing steel may cause significant loss of strength of reinforced concrete structures. The study focuses on accelerating such corrosion and examining the degradation of (i) the compressive strength of concrete due to sodium sulfate in a wet atmosphere; and (ii) the flexural strength by a solution of sodium sulfate and sodium chloride. Three types of concrete were used and different beam specimens were reinforced by steel rebars of different diameters (6, 8 and 10mm), part of the beams being pre-cracked. The concrete with least strength allowed higher sulfate penetration along the entire process and the compressive strength increased slightly, possibly due to lower porosity of concrete after contamination. The results of the flexural tests showed decrease of strength in all cases. Pre-cracked beams exhibited smaller influence of porosity of concrete. Beams with 6mm rebars showed the largest loss of strength due to the contamination and corrosion process
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.