{"title":"赋范群的Lipschitz同构与不动点定理","authors":"M. Sarfraz, F. Ali, Yongjin Li","doi":"10.1080/25742558.2020.1859673","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to propose normed structures for groups and to establish the Lipschitz mapping of a normed group to itself. We also investigate some conjugate and isomorphic Lipschitz mappings to determine the equivalent norm and inverse Lipschitz mappings. Specifically, in the main result, we present a fixed point theorem for self-mappings satisfying certain contraction principles on a complete normed group.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1859673","citationCount":"1","resultStr":"{\"title\":\"Lipschitz isomorphism and fixed point theorem for normed groups\",\"authors\":\"M. Sarfraz, F. Ali, Yongjin Li\",\"doi\":\"10.1080/25742558.2020.1859673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper aims to propose normed structures for groups and to establish the Lipschitz mapping of a normed group to itself. We also investigate some conjugate and isomorphic Lipschitz mappings to determine the equivalent norm and inverse Lipschitz mappings. Specifically, in the main result, we present a fixed point theorem for self-mappings satisfying certain contraction principles on a complete normed group.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2020.1859673\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2020.1859673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1859673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lipschitz isomorphism and fixed point theorem for normed groups
Abstract This paper aims to propose normed structures for groups and to establish the Lipschitz mapping of a normed group to itself. We also investigate some conjugate and isomorphic Lipschitz mappings to determine the equivalent norm and inverse Lipschitz mappings. Specifically, in the main result, we present a fixed point theorem for self-mappings satisfying certain contraction principles on a complete normed group.