赋范群的Lipschitz同构与不动点定理

IF 0.1 Q4 MATHEMATICS
M. Sarfraz, F. Ali, Yongjin Li
{"title":"赋范群的Lipschitz同构与不动点定理","authors":"M. Sarfraz, F. Ali, Yongjin Li","doi":"10.1080/25742558.2020.1859673","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to propose normed structures for groups and to establish the Lipschitz mapping of a normed group to itself. We also investigate some conjugate and isomorphic Lipschitz mappings to determine the equivalent norm and inverse Lipschitz mappings. Specifically, in the main result, we present a fixed point theorem for self-mappings satisfying certain contraction principles on a complete normed group.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1859673","citationCount":"1","resultStr":"{\"title\":\"Lipschitz isomorphism and fixed point theorem for normed groups\",\"authors\":\"M. Sarfraz, F. Ali, Yongjin Li\",\"doi\":\"10.1080/25742558.2020.1859673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper aims to propose normed structures for groups and to establish the Lipschitz mapping of a normed group to itself. We also investigate some conjugate and isomorphic Lipschitz mappings to determine the equivalent norm and inverse Lipschitz mappings. Specifically, in the main result, we present a fixed point theorem for self-mappings satisfying certain contraction principles on a complete normed group.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2020.1859673\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2020.1859673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1859673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文旨在提出群的赋范结构,并建立赋范群对其自身的Lipschitz映射。我们还研究了一些共轭和同构的Lipschitz映射,以确定等价范数和逆Lipschitz-映射。具体地说,在主要结果中,我们给出了完备赋范群上满足某些收缩原理的自映射的不动点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz isomorphism and fixed point theorem for normed groups
Abstract This paper aims to propose normed structures for groups and to establish the Lipschitz mapping of a normed group to itself. We also investigate some conjugate and isomorphic Lipschitz mappings to determine the equivalent norm and inverse Lipschitz mappings. Specifically, in the main result, we present a fixed point theorem for self-mappings satisfying certain contraction principles on a complete normed group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信