单误差校正单调函数的学习

IF 0.3 Q4 MATHEMATICS, APPLIED
S. Selezneva, Yongqing Liu
{"title":"单误差校正单调函数的学习","authors":"S. Selezneva, Yongqing Liu","doi":"10.1515/dma-2021-0017","DOIUrl":null,"url":null,"abstract":"Abstract Learning of monotone functions is a well-known problem. Results obtained by V. K. Korobkov and G. Hansel imply that the complexity φM(n) of learning of monotone Boolean functions equals Cn⌊n/2⌋ $\\begin{array}{} \\displaystyle C_n^{\\lfloor n/2\\rfloor} \\end{array}$ + Cn⌊n/2⌋+1 $\\begin{array}{} \\displaystyle C_n^{\\lfloor n/2\\rfloor+1} \\end{array}$ (φM(n) denotes the least number of queries on the value of an unknown monotone function on a given input sufficient to identify an arbitrary n-ary monotone function). In our paper we consider learning of monotone functions in the case when the teacher is allowed to return an incorrect response to at most one query on the value of an unknown function so that it is still possible to correctly identify the function. We show that learning complexity in case of the possibility of a single error is equal to the complexity in the situation when all responses are correct.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"31 1","pages":"193 - 205"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning of monotone functions with single error correction\",\"authors\":\"S. Selezneva, Yongqing Liu\",\"doi\":\"10.1515/dma-2021-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Learning of monotone functions is a well-known problem. Results obtained by V. K. Korobkov and G. Hansel imply that the complexity φM(n) of learning of monotone Boolean functions equals Cn⌊n/2⌋ $\\\\begin{array}{} \\\\displaystyle C_n^{\\\\lfloor n/2\\\\rfloor} \\\\end{array}$ + Cn⌊n/2⌋+1 $\\\\begin{array}{} \\\\displaystyle C_n^{\\\\lfloor n/2\\\\rfloor+1} \\\\end{array}$ (φM(n) denotes the least number of queries on the value of an unknown monotone function on a given input sufficient to identify an arbitrary n-ary monotone function). In our paper we consider learning of monotone functions in the case when the teacher is allowed to return an incorrect response to at most one query on the value of an unknown function so that it is still possible to correctly identify the function. We show that learning complexity in case of the possibility of a single error is equal to the complexity in the situation when all responses are correct.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"31 1\",\"pages\":\"193 - 205\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2021-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

单调函数的抽象学习是一个众所周知的问题。V.K.Korobkov和G。Hansel暗示单调布尔函数学习的复杂度φM(n)等于Cn⌊n/2⌋$\bear{array}{}\displaystyle C_n^{\lfloor n/2\rfloor}\end{array}$+Cn \8970;n/2𕯯+1$\bearn{array}{}\displaystyle C_n^}\ lfloor n/2\rfoor+1}\end{array}$(φM(n)表示在给定输入上对未知单调函数值的查询次数最少,足以识别任意n元单调函数)。在我们的论文中,我们考虑了单调函数的学习,当教师被允许对未知函数的值的最多一个查询返回错误的响应时,这样仍然可以正确地识别函数。我们证明,在可能出现单个错误的情况下,学习的复杂性等于在所有回答都正确的情况下的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of monotone functions with single error correction
Abstract Learning of monotone functions is a well-known problem. Results obtained by V. K. Korobkov and G. Hansel imply that the complexity φM(n) of learning of monotone Boolean functions equals Cn⌊n/2⌋ $\begin{array}{} \displaystyle C_n^{\lfloor n/2\rfloor} \end{array}$ + Cn⌊n/2⌋+1 $\begin{array}{} \displaystyle C_n^{\lfloor n/2\rfloor+1} \end{array}$ (φM(n) denotes the least number of queries on the value of an unknown monotone function on a given input sufficient to identify an arbitrary n-ary monotone function). In our paper we consider learning of monotone functions in the case when the teacher is allowed to return an incorrect response to at most one query on the value of an unknown function so that it is still possible to correctly identify the function. We show that learning complexity in case of the possibility of a single error is equal to the complexity in the situation when all responses are correct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信