麦克斯韦特征问题的Bochev - Dohrmann - Gunzburger稳定方法

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Zhijie Du, Huoyuan Duan, Can Wang, Qiuyu Zhang
{"title":"麦克斯韦特征问题的Bochev - Dohrmann - Gunzburger稳定方法","authors":"Zhijie Du, Huoyuan Duan, Can Wang, Qiuyu Zhang","doi":"10.1002/num.23026","DOIUrl":null,"url":null,"abstract":"A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev‐Dohrmann‐Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel‐coercivity of the electric field and for stabilizing the inf‐sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest‐order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral‐correct and spurious‐free discrete eigenmodes from the Babus̆ka‐Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"3811 - 3846"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bochev‐Dohrmann‐Gunzburger stabilized method for Maxwell eigenproblem\",\"authors\":\"Zhijie Du, Huoyuan Duan, Can Wang, Qiuyu Zhang\",\"doi\":\"10.1002/num.23026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev‐Dohrmann‐Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel‐coercivity of the electric field and for stabilizing the inf‐sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest‐order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral‐correct and spurious‐free discrete eigenmodes from the Babus̆ka‐Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"39 1\",\"pages\":\"3811 - 3846\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23026\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23026","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种稳定的混合有限元方法,用电场和乘法器求解麦克斯韦本征问题。使用Bochev‐Dohrmann‐Gunzburg稳定,我们引入了一些特殊的稳定参数,用于稳定电场的核矫顽力和乘法器的inf-sup条件。我们证明了稳定混合方法的稳定性和收敛性,并将其应用于仿射矩形和长方体网格以及非仿射四边形网格上的一些经典方法中失败的最低阶边元。特别地,我们从紧凑算子的Babus̆ka‐Osborn谱理论中证明了保证谱正确和无杂散离散本征模的一致收敛性。数值结果说明了稳定方法的性能,并证实了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bochev‐Dohrmann‐Gunzburger stabilized method for Maxwell eigenproblem
A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev‐Dohrmann‐Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel‐coercivity of the electric field and for stabilizing the inf‐sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest‐order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral‐correct and spurious‐free discrete eigenmodes from the Babus̆ka‐Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信