{"title":"麦克斯韦特征问题的Bochev - Dohrmann - Gunzburger稳定方法","authors":"Zhijie Du, Huoyuan Duan, Can Wang, Qiuyu Zhang","doi":"10.1002/num.23026","DOIUrl":null,"url":null,"abstract":"A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev‐Dohrmann‐Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel‐coercivity of the electric field and for stabilizing the inf‐sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest‐order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral‐correct and spurious‐free discrete eigenmodes from the Babus̆ka‐Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"3811 - 3846"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bochev‐Dohrmann‐Gunzburger stabilized method for Maxwell eigenproblem\",\"authors\":\"Zhijie Du, Huoyuan Duan, Can Wang, Qiuyu Zhang\",\"doi\":\"10.1002/num.23026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev‐Dohrmann‐Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel‐coercivity of the electric field and for stabilizing the inf‐sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest‐order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral‐correct and spurious‐free discrete eigenmodes from the Babus̆ka‐Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.\",\"PeriodicalId\":19443,\"journal\":{\"name\":\"Numerical Methods for Partial Differential Equations\",\"volume\":\"39 1\",\"pages\":\"3811 - 3846\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods for Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23026\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23026","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Bochev‐Dohrmann‐Gunzburger stabilized method for Maxwell eigenproblem
A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev‐Dohrmann‐Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel‐coercivity of the electric field and for stabilizing the inf‐sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest‐order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral‐correct and spurious‐free discrete eigenmodes from the Babus̆ka‐Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.