S. Kabdushev, L. Agibayeva, K. Kadyrzhan, A. Bakirov, G. Seitimova, A. T. Kolushpayeva, A. Mun
{"title":"芳香疗法植物材料化学技术新途径","authors":"S. Kabdushev, L. Agibayeva, K. Kadyrzhan, A. Bakirov, G. Seitimova, A. T. Kolushpayeva, A. Mun","doi":"10.18321/ectj1477","DOIUrl":null,"url":null,"abstract":" A new approach to the production of commercial products used in aromatherapy and household aromatizing agents based on induction heating of plant raw materials and the use of hydrophilic polymer hydrogels is proposed. It is shown that obtaining highly purified essential oils is neither technologically nor economically justified from the point of view of their use in aromatherapy. The proposed approach makes it possible to obtain products for aromatherapy with minimal processing of raw materials and low production costs. The main end product is a polymer hydrogel saturated with a liquid phase formed during induction heating of a mixture of a plant component with metal inclusions. Such a product, among other things, allows the implementation of electronic aromatherapy systems and household aromatizing agents, in which the generation of aroma oils is also provided by induction heating. In the operation of such systems, the basic property of thermosensitive hydrogels is used – a shift in the hydrophobic-hydrophilic balance with temperature variations, which makes it possible to exclude parasitic evaporation of volatile components. Specific technical solutions that implement this approach are proposed.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Approaches to Chemical Technologies of Plant Materials for Aromatherapy\",\"authors\":\"S. Kabdushev, L. Agibayeva, K. Kadyrzhan, A. Bakirov, G. Seitimova, A. T. Kolushpayeva, A. Mun\",\"doi\":\"10.18321/ectj1477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" A new approach to the production of commercial products used in aromatherapy and household aromatizing agents based on induction heating of plant raw materials and the use of hydrophilic polymer hydrogels is proposed. It is shown that obtaining highly purified essential oils is neither technologically nor economically justified from the point of view of their use in aromatherapy. The proposed approach makes it possible to obtain products for aromatherapy with minimal processing of raw materials and low production costs. The main end product is a polymer hydrogel saturated with a liquid phase formed during induction heating of a mixture of a plant component with metal inclusions. Such a product, among other things, allows the implementation of electronic aromatherapy systems and household aromatizing agents, in which the generation of aroma oils is also provided by induction heating. In the operation of such systems, the basic property of thermosensitive hydrogels is used – a shift in the hydrophobic-hydrophilic balance with temperature variations, which makes it possible to exclude parasitic evaporation of volatile components. Specific technical solutions that implement this approach are proposed.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj1477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
New Approaches to Chemical Technologies of Plant Materials for Aromatherapy
A new approach to the production of commercial products used in aromatherapy and household aromatizing agents based on induction heating of plant raw materials and the use of hydrophilic polymer hydrogels is proposed. It is shown that obtaining highly purified essential oils is neither technologically nor economically justified from the point of view of their use in aromatherapy. The proposed approach makes it possible to obtain products for aromatherapy with minimal processing of raw materials and low production costs. The main end product is a polymer hydrogel saturated with a liquid phase formed during induction heating of a mixture of a plant component with metal inclusions. Such a product, among other things, allows the implementation of electronic aromatherapy systems and household aromatizing agents, in which the generation of aroma oils is also provided by induction heating. In the operation of such systems, the basic property of thermosensitive hydrogels is used – a shift in the hydrophobic-hydrophilic balance with temperature variations, which makes it possible to exclude parasitic evaporation of volatile components. Specific technical solutions that implement this approach are proposed.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.