{"title":"关于(r;t;s)-核多项式","authors":"A. Bougoutaia, A. Belacel, H. Hamdi","doi":"10.2478/mjpaa-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this work we extend the concept of (r; t; s)-nuclear operators presented by Lapresté in (Studia math., T. LVII. 1976, 47 – 83) to n-homogeneous polynomials. Factorization and inclusion properties are described. Under some conditions, we also characterize the topological dual of the studied space.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"299 - 309"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On (r; t; s)-nuclear polynomials\",\"authors\":\"A. Bougoutaia, A. Belacel, H. Hamdi\",\"doi\":\"10.2478/mjpaa-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work we extend the concept of (r; t; s)-nuclear operators presented by Lapresté in (Studia math., T. LVII. 1976, 47 – 83) to n-homogeneous polynomials. Factorization and inclusion properties are described. Under some conditions, we also characterize the topological dual of the studied space.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"299 - 309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Abstract In this work we extend the concept of (r; t; s)-nuclear operators presented by Lapresté in (Studia math., T. LVII. 1976, 47 – 83) to n-homogeneous polynomials. Factorization and inclusion properties are described. Under some conditions, we also characterize the topological dual of the studied space.