Maik Henrich, Mercedes Burgueño, J. Hoyer, T. Haucke, V. Steinhage, H. Kühl, M. Heurich
{"title":"一种用于人口密度估计的半自动相机陷阱距离采样方法","authors":"Maik Henrich, Mercedes Burgueño, J. Hoyer, T. Haucke, V. Steinhage, H. Kühl, M. Heurich","doi":"10.1002/rse2.362","DOIUrl":null,"url":null,"abstract":"Camera traps have become important tools for the monitoring of animal populations. However, the study‐specific estimation of animal detection probabilities is key if unbiased abundance estimates of unmarked species are to be obtained. Since this process can be very time‐consuming, we developed the first semi‐automated workflow for animals of any size and shape to estimate detection probabilities and population densities. In order to obtain observation distances, a deep learning algorithm is used to create relative depth images that are calibrated with a small set of reference photos for each location, with distances then extracted for animals automatically detected by MegaDetector 4.0. Animal detection by MegaDetector was generally independent of the distance to the camera trap for 10 animal species at two different study sites. If an animal was detected both manually and automatically, the difference in the distance estimates was often minimal at a distance about 4 m from the camera trap. The difference increased approximately linearly for larger distances. Nonetheless, population density estimates based on manual and semi‐automated camera trap distance sampling workflows did not differ significantly. Our results show that a readily available software for semi‐automated distance estimation can reliably be used within a camera trap distance sampling workflow, reducing the time required for data processing, by >13‐fold. This greatly improves the accessibility of camera trap distance sampling for wildlife research and management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi‐automated camera trap distance sampling approach for population density estimation\",\"authors\":\"Maik Henrich, Mercedes Burgueño, J. Hoyer, T. Haucke, V. Steinhage, H. Kühl, M. Heurich\",\"doi\":\"10.1002/rse2.362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camera traps have become important tools for the monitoring of animal populations. However, the study‐specific estimation of animal detection probabilities is key if unbiased abundance estimates of unmarked species are to be obtained. Since this process can be very time‐consuming, we developed the first semi‐automated workflow for animals of any size and shape to estimate detection probabilities and population densities. In order to obtain observation distances, a deep learning algorithm is used to create relative depth images that are calibrated with a small set of reference photos for each location, with distances then extracted for animals automatically detected by MegaDetector 4.0. Animal detection by MegaDetector was generally independent of the distance to the camera trap for 10 animal species at two different study sites. If an animal was detected both manually and automatically, the difference in the distance estimates was often minimal at a distance about 4 m from the camera trap. The difference increased approximately linearly for larger distances. Nonetheless, population density estimates based on manual and semi‐automated camera trap distance sampling workflows did not differ significantly. Our results show that a readily available software for semi‐automated distance estimation can reliably be used within a camera trap distance sampling workflow, reducing the time required for data processing, by >13‐fold. This greatly improves the accessibility of camera trap distance sampling for wildlife research and management.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.362\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.362","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
A semi‐automated camera trap distance sampling approach for population density estimation
Camera traps have become important tools for the monitoring of animal populations. However, the study‐specific estimation of animal detection probabilities is key if unbiased abundance estimates of unmarked species are to be obtained. Since this process can be very time‐consuming, we developed the first semi‐automated workflow for animals of any size and shape to estimate detection probabilities and population densities. In order to obtain observation distances, a deep learning algorithm is used to create relative depth images that are calibrated with a small set of reference photos for each location, with distances then extracted for animals automatically detected by MegaDetector 4.0. Animal detection by MegaDetector was generally independent of the distance to the camera trap for 10 animal species at two different study sites. If an animal was detected both manually and automatically, the difference in the distance estimates was often minimal at a distance about 4 m from the camera trap. The difference increased approximately linearly for larger distances. Nonetheless, population density estimates based on manual and semi‐automated camera trap distance sampling workflows did not differ significantly. Our results show that a readily available software for semi‐automated distance estimation can reliably be used within a camera trap distance sampling workflow, reducing the time required for data processing, by >13‐fold. This greatly improves the accessibility of camera trap distance sampling for wildlife research and management.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.