{"title":"评价生物土壤结皮对钙镁硅酸盐溶解和二氧化碳固存的作用","authors":"R. Dorn","doi":"10.1080/02723646.2021.1919379","DOIUrl":null,"url":null,"abstract":"ABSTRACT Biological soil crusts (BSCs) monitored over a 25-year period enhance the dissolution of the Ca-silicate plagioclase and the Mg-silicate olivine at Sonoran Desert and Colorado Plateau, USA, study sites. This first measured biological enhancement of weathering (BEW) for plagioclase is a mean of 2.3±0.4 and 3.0±0.4 for the Organic Pipe, Arizona and Moab, Utah study sites; and it is 4.9±0.8 and 3.9±0.3 for olivine at these respective sites. These BEWs are low compared to other biological agents such as lichens, tree roots, termites and especially ants. If these modern BEW for BCSs reflect the magnitude of BEW in Archean soil crusts, then the presence of abundant BSCs covering an Archean Earth surface would not contradict available evidence for no substantial atmospheric CO2 decline in Earth’s early atmosphere. The relatively low BEW value for BCSs indicates that BSCs would not be a useful geoengineering solution to high levels of atmospheric carbon dioxide.","PeriodicalId":54618,"journal":{"name":"Physical Geography","volume":"42 1","pages":"529 - 541"},"PeriodicalIF":1.1000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/02723646.2021.1919379","citationCount":"1","resultStr":"{\"title\":\"Assessing biological soil crusts as agents of Ca–Mg silicate dissolution and CO2 sequestration\",\"authors\":\"R. Dorn\",\"doi\":\"10.1080/02723646.2021.1919379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Biological soil crusts (BSCs) monitored over a 25-year period enhance the dissolution of the Ca-silicate plagioclase and the Mg-silicate olivine at Sonoran Desert and Colorado Plateau, USA, study sites. This first measured biological enhancement of weathering (BEW) for plagioclase is a mean of 2.3±0.4 and 3.0±0.4 for the Organic Pipe, Arizona and Moab, Utah study sites; and it is 4.9±0.8 and 3.9±0.3 for olivine at these respective sites. These BEWs are low compared to other biological agents such as lichens, tree roots, termites and especially ants. If these modern BEW for BCSs reflect the magnitude of BEW in Archean soil crusts, then the presence of abundant BSCs covering an Archean Earth surface would not contradict available evidence for no substantial atmospheric CO2 decline in Earth’s early atmosphere. The relatively low BEW value for BCSs indicates that BSCs would not be a useful geoengineering solution to high levels of atmospheric carbon dioxide.\",\"PeriodicalId\":54618,\"journal\":{\"name\":\"Physical Geography\",\"volume\":\"42 1\",\"pages\":\"529 - 541\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/02723646.2021.1919379\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Geography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/02723646.2021.1919379\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/02723646.2021.1919379","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessing biological soil crusts as agents of Ca–Mg silicate dissolution and CO2 sequestration
ABSTRACT Biological soil crusts (BSCs) monitored over a 25-year period enhance the dissolution of the Ca-silicate plagioclase and the Mg-silicate olivine at Sonoran Desert and Colorado Plateau, USA, study sites. This first measured biological enhancement of weathering (BEW) for plagioclase is a mean of 2.3±0.4 and 3.0±0.4 for the Organic Pipe, Arizona and Moab, Utah study sites; and it is 4.9±0.8 and 3.9±0.3 for olivine at these respective sites. These BEWs are low compared to other biological agents such as lichens, tree roots, termites and especially ants. If these modern BEW for BCSs reflect the magnitude of BEW in Archean soil crusts, then the presence of abundant BSCs covering an Archean Earth surface would not contradict available evidence for no substantial atmospheric CO2 decline in Earth’s early atmosphere. The relatively low BEW value for BCSs indicates that BSCs would not be a useful geoengineering solution to high levels of atmospheric carbon dioxide.
期刊介绍:
Physical Geography disseminates significant research in the environmental sciences, including research that integrates environmental processes and human activities. It publishes original papers devoted to research in climatology, geomorphology, hydrology, biogeography, soil science, human-environment interactions, and research methods in physical geography, and welcomes original contributions on topics at the intersection of two or more of these categories.