准单幂Kummer映射的局部常数

IF 1.5 1区 数学 Q1 MATHEMATICS
L. A. Betts
{"title":"准单幂Kummer映射的局部常数","authors":"L. A. Betts","doi":"10.1112/plms.12554","DOIUrl":null,"url":null,"abstract":"It is a theorem of Kim–Tamagawa that the Qℓ${\\mathbb {Q}}_\\ell$ ‐pro‐unipotent Kummer map associated to a smooth projective curve Y$Y$ over a finite extension of Qp${\\mathbb {Q}}_p$ is locally constant when ℓ≠p$\\ell \\ne p$ . This paper establishes two generalisations of this result. First, we extend the Kim–Tamagawa theorem to the case that Y$Y$ is a smooth variety of any dimension. Second, we formulate and prove the analogue of the Kim–Tamagawa theorem in the case ℓ=p$\\ell =p$ , again in arbitrary dimension. In the course of proving the latter, we give a proof of an étale–de Rham comparison theorem for pro‐unipotent fundamental groupoids using methods of Scholze and Diao–Lan–Liu–Zhu. This extends the comparison theorem proved by Vologodsky for certain truncations of the fundamental groupoids.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local constancy of pro‐unipotent Kummer maps\",\"authors\":\"L. A. Betts\",\"doi\":\"10.1112/plms.12554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a theorem of Kim–Tamagawa that the Qℓ${\\\\mathbb {Q}}_\\\\ell$ ‐pro‐unipotent Kummer map associated to a smooth projective curve Y$Y$ over a finite extension of Qp${\\\\mathbb {Q}}_p$ is locally constant when ℓ≠p$\\\\ell \\\\ne p$ . This paper establishes two generalisations of this result. First, we extend the Kim–Tamagawa theorem to the case that Y$Y$ is a smooth variety of any dimension. Second, we formulate and prove the analogue of the Kim–Tamagawa theorem in the case ℓ=p$\\\\ell =p$ , again in arbitrary dimension. In the course of proving the latter, we give a proof of an étale–de Rham comparison theorem for pro‐unipotent fundamental groupoids using methods of Scholze and Diao–Lan–Liu–Zhu. This extends the comparison theorem proved by Vologodsky for certain truncations of the fundamental groupoids.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12554\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12554","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这是Kim–Tamagawa的一个定理ℓ$当ℓ≠p$\ell\ne p$。本文建立了这一结果的两个推广。首先,我们将Kim–Tamagawa定理推广到Y$Y$是任何维度的光滑变体的情况。其次,我们在这种情况下建立并证明了Kim–Tamagawa定理的类似性ℓ=p$\ell=p$,同样为任意维度。在证明后者的过程中,我们使用Scholze和Diao–Lan–Liu–Zhu的方法,给出了亲单势基本群胚的一个étale–de Rham比较定理的证明。这推广了Vologodsky对基本群胚的某些截断所证明的比较定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local constancy of pro‐unipotent Kummer maps
It is a theorem of Kim–Tamagawa that the Qℓ${\mathbb {Q}}_\ell$ ‐pro‐unipotent Kummer map associated to a smooth projective curve Y$Y$ over a finite extension of Qp${\mathbb {Q}}_p$ is locally constant when ℓ≠p$\ell \ne p$ . This paper establishes two generalisations of this result. First, we extend the Kim–Tamagawa theorem to the case that Y$Y$ is a smooth variety of any dimension. Second, we formulate and prove the analogue of the Kim–Tamagawa theorem in the case ℓ=p$\ell =p$ , again in arbitrary dimension. In the course of proving the latter, we give a proof of an étale–de Rham comparison theorem for pro‐unipotent fundamental groupoids using methods of Scholze and Diao–Lan–Liu–Zhu. This extends the comparison theorem proved by Vologodsky for certain truncations of the fundamental groupoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信