均匀流动振动圆筒的一种复盖网格法

IF 1.1 Q4 MECHANICS
F. O. Hamdoon, Alaa Abdulhady Jaber, Enass H. Flaieh
{"title":"均匀流动振动圆筒的一种复盖网格法","authors":"F. O. Hamdoon, Alaa Abdulhady Jaber, Enass H. Flaieh","doi":"10.1515/cls-2022-0178","DOIUrl":null,"url":null,"abstract":"Abstract This paper has numerically investigated twodimensional laminar flow over a vibrating circular cylinder. Numerical simulation is performed using the dynamic overset mesh method available in commercial software ANSYS FLUENT 19.0. A simple harmonic motion is applied to simulate the cylinder vibration using the user-defined function (UDF) tool in FLUENT. To examine the accuracy and the capability of the present overset mesh approach, two test types of cylinder vibration are simulated: crossflow and inline vibrations. All simulations are performed at a constant Reynolds number (Re = 100) to predict the occurrence of synchronization or lock-in phenomenon. For the case of crossflow vibration, it is observed that lock-in occurs with cylinder oscillation frequency near the Strouhal frequency of the fixed cylinder. However, for the inline vibration, lockin occurs near twice the Strouhal frequency of the fixed cylinder. Furthermore, in the case of crossflow oscillation, the frequency content in the lift coefficients’ time history is successfully linked to the phase portraits’ shape and the vorticity field. The simulation results are consistent with the available published data in the literature. This indicates that the present numerical technique is valid and capable of modeling flows with moving structural systems.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"9 1","pages":"396 - 402"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An overset mesh approach for a vibrating cylinder in uniform flow\",\"authors\":\"F. O. Hamdoon, Alaa Abdulhady Jaber, Enass H. Flaieh\",\"doi\":\"10.1515/cls-2022-0178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper has numerically investigated twodimensional laminar flow over a vibrating circular cylinder. Numerical simulation is performed using the dynamic overset mesh method available in commercial software ANSYS FLUENT 19.0. A simple harmonic motion is applied to simulate the cylinder vibration using the user-defined function (UDF) tool in FLUENT. To examine the accuracy and the capability of the present overset mesh approach, two test types of cylinder vibration are simulated: crossflow and inline vibrations. All simulations are performed at a constant Reynolds number (Re = 100) to predict the occurrence of synchronization or lock-in phenomenon. For the case of crossflow vibration, it is observed that lock-in occurs with cylinder oscillation frequency near the Strouhal frequency of the fixed cylinder. However, for the inline vibration, lockin occurs near twice the Strouhal frequency of the fixed cylinder. Furthermore, in the case of crossflow oscillation, the frequency content in the lift coefficients’ time history is successfully linked to the phase portraits’ shape and the vorticity field. The simulation results are consistent with the available published data in the literature. This indicates that the present numerical technique is valid and capable of modeling flows with moving structural systems.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"9 1\",\"pages\":\"396 - 402\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

摘要

本文对振动圆柱上的二维层流进行了数值研究。使用商业软件ANSYS FLUENT 19.0中提供的动态重叠网格方法进行数值模拟。利用FLUENT中的自定义函数(UDF)工具,应用简谐运动来模拟气缸振动。为了检验当前套叠网格方法的准确性和能力,模拟了两种测试类型的圆柱体振动:横流和直列振动。所有模拟都是在恒定雷诺数(Re=100)下进行的,以预测同步或锁定现象的发生。对于横流振动的情况,观察到锁定发生在圆柱体振荡频率接近固定圆柱体的斯特劳哈尔频率的情况下。然而,对于直列振动,锁定发生在固定圆柱体的Strouhal频率的两倍附近。此外,在横流振荡的情况下,升力系数时程中的频率含量成功地与相图的形状和涡度场联系起来。模拟结果与文献中已发表的数据一致。这表明目前的数值技术是有效的,能够模拟具有运动结构系统的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overset mesh approach for a vibrating cylinder in uniform flow
Abstract This paper has numerically investigated twodimensional laminar flow over a vibrating circular cylinder. Numerical simulation is performed using the dynamic overset mesh method available in commercial software ANSYS FLUENT 19.0. A simple harmonic motion is applied to simulate the cylinder vibration using the user-defined function (UDF) tool in FLUENT. To examine the accuracy and the capability of the present overset mesh approach, two test types of cylinder vibration are simulated: crossflow and inline vibrations. All simulations are performed at a constant Reynolds number (Re = 100) to predict the occurrence of synchronization or lock-in phenomenon. For the case of crossflow vibration, it is observed that lock-in occurs with cylinder oscillation frequency near the Strouhal frequency of the fixed cylinder. However, for the inline vibration, lockin occurs near twice the Strouhal frequency of the fixed cylinder. Furthermore, in the case of crossflow oscillation, the frequency content in the lift coefficients’ time history is successfully linked to the phase portraits’ shape and the vorticity field. The simulation results are consistent with the available published data in the literature. This indicates that the present numerical technique is valid and capable of modeling flows with moving structural systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信