生物质颗粒在流化床中流体动力学行为的实验研究综述

IF 0.6 Q4 CHEMISTRY, MULTIDISCIPLINARY
K. Tannous, A. G. D. Mitri, V. Mizonov
{"title":"生物质颗粒在流化床中流体动力学行为的实验研究综述","authors":"K. Tannous, A. G. D. Mitri, V. Mizonov","doi":"10.6060/IVKKT.20186109-10.5895","DOIUrl":null,"url":null,"abstract":"Decease of natural resources and increase of price of fossil fuels at growing energy consumption, toughening of ecological standards and necessity of the increase of the level of energetics diversification motivates mankind to more wide usage of renewable energy resources including the solid fuel of biological origin. The potential of biofuel usage is rather considerable because the energy equivalent of the biomass harvest on the land exceeds the worldwide energy consumption several times as much. The biomass application as a renewable fuel is already a reality worldwide with the development of policies and technologies that turn viable the transformation of biomass into energy. The aims of this work is to present a literature experimental review on the studies concerning to the use of fluidized beds taking into account their design and scale-up. Initially, the usual solid particle terminology and some important biomass properties are presented. A brief description of conversion technologies and the fluidization phenomena are introduced, followed by an explanation of the different experimental techniques. The characteristic velocities (initial, apparent, of segregation, and complete) are discussed based on different biomass properties, as well as a number of empirical correlations for these velocities are described. Finally, some considerations are made about characteristic bed porosities (apparent and complete) and bed expansion. Based on the literature analysis, an improvement has been done on the understanding of the biomass fluidization phenomena, however, further research is needed to comprehend the effect of biomass characteristics on the bed operational parameters, besides more accurate and general correlations must be developed to improve these technologies. \nFor citation: \nTannous K., De Mitri A.G., Mizonov V. Experimental study of fluid dynamic behavior of biomassparticles in fluidized beds: a review. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 4-14","PeriodicalId":45993,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL STUDY OF FLUID DYNAMIC BEHAVIOR OF BIOMASS PARTICLES IN FLUIDIZED BEDS: A REVIEW\",\"authors\":\"K. Tannous, A. G. D. Mitri, V. Mizonov\",\"doi\":\"10.6060/IVKKT.20186109-10.5895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decease of natural resources and increase of price of fossil fuels at growing energy consumption, toughening of ecological standards and necessity of the increase of the level of energetics diversification motivates mankind to more wide usage of renewable energy resources including the solid fuel of biological origin. The potential of biofuel usage is rather considerable because the energy equivalent of the biomass harvest on the land exceeds the worldwide energy consumption several times as much. The biomass application as a renewable fuel is already a reality worldwide with the development of policies and technologies that turn viable the transformation of biomass into energy. The aims of this work is to present a literature experimental review on the studies concerning to the use of fluidized beds taking into account their design and scale-up. Initially, the usual solid particle terminology and some important biomass properties are presented. A brief description of conversion technologies and the fluidization phenomena are introduced, followed by an explanation of the different experimental techniques. The characteristic velocities (initial, apparent, of segregation, and complete) are discussed based on different biomass properties, as well as a number of empirical correlations for these velocities are described. Finally, some considerations are made about characteristic bed porosities (apparent and complete) and bed expansion. Based on the literature analysis, an improvement has been done on the understanding of the biomass fluidization phenomena, however, further research is needed to comprehend the effect of biomass characteristics on the bed operational parameters, besides more accurate and general correlations must be developed to improve these technologies. \\nFor citation: \\nTannous K., De Mitri A.G., Mizonov V. Experimental study of fluid dynamic behavior of biomassparticles in fluidized beds: a review. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 4-14\",\"PeriodicalId\":45993,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6060/IVKKT.20186109-10.5895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/IVKKT.20186109-10.5895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着能源消耗的增长,自然资源的减少和化石燃料价格的上涨,生态标准的加强以及能源多样化水平提高的必要性促使人类更广泛地使用可再生能源,包括生物来源的固体燃料。生物燃料的使用潜力相当可观,因为土地上收获的生物质的能源当量超过了全球能源消耗的数倍。随着将生物质转化为能源的政策和技术的发展,生物质作为可再生燃料的应用已经成为世界各地的现实。这项工作的目的是在考虑流化床设计和放大的情况下,对有关流化床使用的研究进行文献实验综述。首先,介绍了常用的固体颗粒术语和一些重要的生物质性质。简要介绍了转化技术和流化现象,然后解释了不同的实验技术。基于不同的生物质性质,讨论了特征速度(初始、表观、分离和完全),并描述了这些速度的一些经验相关性。最后,对特征床孔隙率(表观和完全)和床膨胀进行了一些考虑。在文献分析的基础上,对生物质流化现象的理解有所提高,但还需要进一步的研究来理解生物质特性对床层操作参数的影响,此外,还必须建立更准确和通用的相关性来改进这些技术。引用:Tannous K.,De Mitri A.G.,Mizonov V.流化床中生物颗粒流体动力学行为的实验研究:综述。伊兹夫。维什。Uchebn。扎维德。Khim。Khim。Tekhnol。2018年第61条。N 9-10。第4-14页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPERIMENTAL STUDY OF FLUID DYNAMIC BEHAVIOR OF BIOMASS PARTICLES IN FLUIDIZED BEDS: A REVIEW
Decease of natural resources and increase of price of fossil fuels at growing energy consumption, toughening of ecological standards and necessity of the increase of the level of energetics diversification motivates mankind to more wide usage of renewable energy resources including the solid fuel of biological origin. The potential of biofuel usage is rather considerable because the energy equivalent of the biomass harvest on the land exceeds the worldwide energy consumption several times as much. The biomass application as a renewable fuel is already a reality worldwide with the development of policies and technologies that turn viable the transformation of biomass into energy. The aims of this work is to present a literature experimental review on the studies concerning to the use of fluidized beds taking into account their design and scale-up. Initially, the usual solid particle terminology and some important biomass properties are presented. A brief description of conversion technologies and the fluidization phenomena are introduced, followed by an explanation of the different experimental techniques. The characteristic velocities (initial, apparent, of segregation, and complete) are discussed based on different biomass properties, as well as a number of empirical correlations for these velocities are described. Finally, some considerations are made about characteristic bed porosities (apparent and complete) and bed expansion. Based on the literature analysis, an improvement has been done on the understanding of the biomass fluidization phenomena, however, further research is needed to comprehend the effect of biomass characteristics on the bed operational parameters, besides more accurate and general correlations must be developed to improve these technologies. For citation: Tannous K., De Mitri A.G., Mizonov V. Experimental study of fluid dynamic behavior of biomassparticles in fluidized beds: a review. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 4-14
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
44.40%
发文量
83
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信