光滑cw复合体的惠特尼近似

Pub Date : 2020-01-09 DOI:10.2206/kyushujm.76.177
Norio Iwase
{"title":"光滑cw复合体的惠特尼近似","authors":"Norio Iwase","doi":"10.2206/kyushujm.76.177","DOIUrl":null,"url":null,"abstract":"Theorem A.1 in [II19] claimed that a topological CW complex is homotopy equivalent to a smooth CW complex without details. To give a more precise proof, we show a version of Whitney Approximation for a smooth CW complex, which actually enables us to give a concrete proof for Theorem A.1 in [II19].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"WHITNEY APPROXIMATION FOR SMOOTH CW COMPLEX\",\"authors\":\"Norio Iwase\",\"doi\":\"10.2206/kyushujm.76.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theorem A.1 in [II19] claimed that a topological CW complex is homotopy equivalent to a smooth CW complex without details. To give a more precise proof, we show a version of Whitney Approximation for a smooth CW complex, which actually enables us to give a concrete proof for Theorem A.1 in [II19].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

[II19]中的定理A.1声称拓扑CW复形在没有细节的情况下与光滑CW复形是同构等价的。为了给出更精确的证明,我们展示了光滑CW复形的Whitney近似的一个版本,这实际上使我们能够给出[II19]中定理a.1的具体证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
WHITNEY APPROXIMATION FOR SMOOTH CW COMPLEX
Theorem A.1 in [II19] claimed that a topological CW complex is homotopy equivalent to a smooth CW complex without details. To give a more precise proof, we show a version of Whitney Approximation for a smooth CW complex, which actually enables us to give a concrete proof for Theorem A.1 in [II19].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信