核空间对偶中随机卷积和随机演化方程的时间正则性

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
C. Fonseca-Mora
{"title":"核空间对偶中随机卷积和随机演化方程的时间正则性","authors":"C. Fonseca-Mora","doi":"10.1080/07362994.2022.2144374","DOIUrl":null,"url":null,"abstract":"Let Φ a locally convex space and Ψ be a quasi-complete, bornological, nuclear space (like spaces of smooth functions and distributions) with dual spaces Φ ′ and Ψ ′ . In this work we introduce sufficient conditions for time regularity properties of the Ψ ′ -valued stochastic convolution R t 0 R U S ( t − r ) ′ R ( r, u ) M ( dr, du ), t ∈ [0 , T ], where ( S ( t ) : t ≥ 0) is a C 0 -semigroup on Ψ, R ( r, ω, u ) is a suitable operator form Φ ′ into Ψ ′ and M is a cylindrical-martingale valued measure on Φ ′ . Our result is latter applied to study time regularity of solutions to Ψ ′ -valued stochastic evolutions equations. 2020 Mathematics Subject Classification: 60G17, 60H05, 60H15, 60G20.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time regularity of stochastic convolutions and stochastic evolution equations in duals of nuclear spaces\",\"authors\":\"C. Fonseca-Mora\",\"doi\":\"10.1080/07362994.2022.2144374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Φ a locally convex space and Ψ be a quasi-complete, bornological, nuclear space (like spaces of smooth functions and distributions) with dual spaces Φ ′ and Ψ ′ . In this work we introduce sufficient conditions for time regularity properties of the Ψ ′ -valued stochastic convolution R t 0 R U S ( t − r ) ′ R ( r, u ) M ( dr, du ), t ∈ [0 , T ], where ( S ( t ) : t ≥ 0) is a C 0 -semigroup on Ψ, R ( r, ω, u ) is a suitable operator form Φ ′ into Ψ ′ and M is a cylindrical-martingale valued measure on Φ ′ . Our result is latter applied to study time regularity of solutions to Ψ ′ -valued stochastic evolutions equations. 2020 Mathematics Subject Classification: 60G17, 60H05, 60H15, 60G20.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2022.2144374\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2022.2144374","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设Φ是局部凸空间,Ψ是具有对偶空间Φ′和Ψ′的拟完全、出生论核空间(光滑函数和分布的相似空间)。在这项工作中,我们引入了Ψ′值随机卷积R t0 R U S(t−R)′R(R,U)M(dr,du),t∈[0,t]的时间正则性性质的充分条件,其中(S(t):t≥0)是Ψ上的C0-半群,R(R,ω,U)是Φ′到Ψ′的合适算子,M是Φ′上的圆柱鞅值测度。我们的结果应用于研究Ψ′值随机演化方程解的时间正则性。2020数学学科分类:60G17、60H05、60H15、60G20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time regularity of stochastic convolutions and stochastic evolution equations in duals of nuclear spaces
Let Φ a locally convex space and Ψ be a quasi-complete, bornological, nuclear space (like spaces of smooth functions and distributions) with dual spaces Φ ′ and Ψ ′ . In this work we introduce sufficient conditions for time regularity properties of the Ψ ′ -valued stochastic convolution R t 0 R U S ( t − r ) ′ R ( r, u ) M ( dr, du ), t ∈ [0 , T ], where ( S ( t ) : t ≥ 0) is a C 0 -semigroup on Ψ, R ( r, ω, u ) is a suitable operator form Φ ′ into Ψ ′ and M is a cylindrical-martingale valued measure on Φ ′ . Our result is latter applied to study time regularity of solutions to Ψ ′ -valued stochastic evolutions equations. 2020 Mathematics Subject Classification: 60G17, 60H05, 60H15, 60G20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信