Guo Kesheng, H. Lang, Wei Hong, Hu Qiang, Hongbo He, Xu Ping
{"title":"HfO2单层材料的制备及ns激光损伤研究","authors":"Guo Kesheng, H. Lang, Wei Hong, Hu Qiang, Hongbo He, Xu Ping","doi":"10.4236/opj.2021.118024","DOIUrl":null,"url":null,"abstract":"The effects of the main parameters of argon flux, oxygen flux and beam voltage on the surface morphology, transmittance spectrum and laser damage of the HfO2 single layers prepared by ion beam sputtering are studied. The HfO2 amorphous single layers have porous surface morphologies. Different processes will cause differences in coatings absorption and surface morphology, which in turn will cause changes in the spectral transmittance curve. The ion beam sputtering HfO2 single layers have high content of argon (4.5% - 8%). The laser damage of HfO2 single layers is related to argon inclusions and non-stoichiometric defects. The changes of argon flux and beam voltage have a greater impact on argon content and O/Hf ratio. When the argon content in the coatings is lower and the O/Hf ratio is higher, the laser damage thresholds of the HfO2 single layers are higher.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Preparation and Ns-Laser Damage of HfO2 Single Layers\",\"authors\":\"Guo Kesheng, H. Lang, Wei Hong, Hu Qiang, Hongbo He, Xu Ping\",\"doi\":\"10.4236/opj.2021.118024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of the main parameters of argon flux, oxygen flux and beam voltage on the surface morphology, transmittance spectrum and laser damage of the HfO2 single layers prepared by ion beam sputtering are studied. The HfO2 amorphous single layers have porous surface morphologies. Different processes will cause differences in coatings absorption and surface morphology, which in turn will cause changes in the spectral transmittance curve. The ion beam sputtering HfO2 single layers have high content of argon (4.5% - 8%). The laser damage of HfO2 single layers is related to argon inclusions and non-stoichiometric defects. The changes of argon flux and beam voltage have a greater impact on argon content and O/Hf ratio. When the argon content in the coatings is lower and the O/Hf ratio is higher, the laser damage thresholds of the HfO2 single layers are higher.\",\"PeriodicalId\":64491,\"journal\":{\"name\":\"光学与光子学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光学与光子学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/opj.2021.118024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/opj.2021.118024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Preparation and Ns-Laser Damage of HfO2 Single Layers
The effects of the main parameters of argon flux, oxygen flux and beam voltage on the surface morphology, transmittance spectrum and laser damage of the HfO2 single layers prepared by ion beam sputtering are studied. The HfO2 amorphous single layers have porous surface morphologies. Different processes will cause differences in coatings absorption and surface morphology, which in turn will cause changes in the spectral transmittance curve. The ion beam sputtering HfO2 single layers have high content of argon (4.5% - 8%). The laser damage of HfO2 single layers is related to argon inclusions and non-stoichiometric defects. The changes of argon flux and beam voltage have a greater impact on argon content and O/Hf ratio. When the argon content in the coatings is lower and the O/Hf ratio is higher, the laser damage thresholds of the HfO2 single layers are higher.