{"title":"具有格林核的第二类Fredholm积分方程的迭代Galerkin解的渐近展开","authors":"Gobinda Rakshit, Akshay S. Rane","doi":"10.1216/jie.2020.32.495","DOIUrl":null,"url":null,"abstract":"We consider a Fredholm integral equation of the second kind with kernel of the type of Green’s function. Iterated Galerkin method is applied to such an integral equation. For r≥1, a space of piecewise polynomials of degree ≤r−1 with respect to a uniform partition is chosen to be the approximating space. We obtain an asymptotic expansion for the iterated Galerkin solution at the partition points. Richardson extrapolation is used to increase the order of convergence. A numerical example is considered to illustrate our theoretical results.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":"32 1","pages":"495-507"},"PeriodicalIF":0.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic expansion of iterated Galerkin solution of Fredholm integral equations of the second kind with Green's kernel\",\"authors\":\"Gobinda Rakshit, Akshay S. Rane\",\"doi\":\"10.1216/jie.2020.32.495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Fredholm integral equation of the second kind with kernel of the type of Green’s function. Iterated Galerkin method is applied to such an integral equation. For r≥1, a space of piecewise polynomials of degree ≤r−1 with respect to a uniform partition is chosen to be the approximating space. We obtain an asymptotic expansion for the iterated Galerkin solution at the partition points. Richardson extrapolation is used to increase the order of convergence. A numerical example is considered to illustrate our theoretical results.\",\"PeriodicalId\":50176,\"journal\":{\"name\":\"Journal of Integral Equations and Applications\",\"volume\":\"32 1\",\"pages\":\"495-507\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integral Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jie.2020.32.495\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2020.32.495","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic expansion of iterated Galerkin solution of Fredholm integral equations of the second kind with Green's kernel
We consider a Fredholm integral equation of the second kind with kernel of the type of Green’s function. Iterated Galerkin method is applied to such an integral equation. For r≥1, a space of piecewise polynomials of degree ≤r−1 with respect to a uniform partition is chosen to be the approximating space. We obtain an asymptotic expansion for the iterated Galerkin solution at the partition points. Richardson extrapolation is used to increase the order of convergence. A numerical example is considered to illustrate our theoretical results.
期刊介绍:
Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications.
The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field.
The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.