Maria Zisi, I. Stavridis, G. Bogdanis, G. Terzis, G. Paradisis
{"title":"健美操对短跑成绩和运动学的急性影响","authors":"Maria Zisi, I. Stavridis, G. Bogdanis, G. Terzis, G. Paradisis","doi":"10.3390/physiologia3020021","DOIUrl":null,"url":null,"abstract":"Background: Post-activation potentiation refers to the acute and temporary enhancement of performance in explosive movements after performing a conditioning activity, such as plyometrics. The current study aimed to investigate the acute effects of horizontal leg bounding on 30 m acceleration performance, 5 m split times, and sprint kinematics (step frequency and length, flight and contact time). Methods: Fourteen young sprinters, nine females and five males, performed two experimental conditions and one control condition in randomized and crossover orders. The experimental conditions included 3 × 10 repetitions of alternate-leg horizontal bounding or 3 × 5 repetitions of single-leg horizontal bounding for each leg. Active recovery was performed in the control condition. A 30 m sprint test was executed before and 5 min after each condition. Results: Sprint times at 5 m (p = 0.014) and 10 m (p = 0.041) were improved after performing alternate-leg horizontal bounding. Additionally, an increase in running velocity (p = 0.017) and step frequency (p = 0.028) was observed in the 0–5 m segment of the sprint. Sprint performance and kinematics showed no significant differences after performing single-leg horizontal bounding. Conclusions: Alternate-leg horizontal bounding, which is a sprint-specific exercise that emphasizes a horizontal impulse, can be used effectively to improve performance in the initial phase of sprint acceleration.","PeriodicalId":93484,"journal":{"name":"Physiologia","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics\",\"authors\":\"Maria Zisi, I. Stavridis, G. Bogdanis, G. Terzis, G. Paradisis\",\"doi\":\"10.3390/physiologia3020021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Post-activation potentiation refers to the acute and temporary enhancement of performance in explosive movements after performing a conditioning activity, such as plyometrics. The current study aimed to investigate the acute effects of horizontal leg bounding on 30 m acceleration performance, 5 m split times, and sprint kinematics (step frequency and length, flight and contact time). Methods: Fourteen young sprinters, nine females and five males, performed two experimental conditions and one control condition in randomized and crossover orders. The experimental conditions included 3 × 10 repetitions of alternate-leg horizontal bounding or 3 × 5 repetitions of single-leg horizontal bounding for each leg. Active recovery was performed in the control condition. A 30 m sprint test was executed before and 5 min after each condition. Results: Sprint times at 5 m (p = 0.014) and 10 m (p = 0.041) were improved after performing alternate-leg horizontal bounding. Additionally, an increase in running velocity (p = 0.017) and step frequency (p = 0.028) was observed in the 0–5 m segment of the sprint. Sprint performance and kinematics showed no significant differences after performing single-leg horizontal bounding. Conclusions: Alternate-leg horizontal bounding, which is a sprint-specific exercise that emphasizes a horizontal impulse, can be used effectively to improve performance in the initial phase of sprint acceleration.\",\"PeriodicalId\":93484,\"journal\":{\"name\":\"Physiologia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/physiologia3020021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/physiologia3020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Acute Effects of Plyometric Exercises on Sprint Performance and Kinematics
Background: Post-activation potentiation refers to the acute and temporary enhancement of performance in explosive movements after performing a conditioning activity, such as plyometrics. The current study aimed to investigate the acute effects of horizontal leg bounding on 30 m acceleration performance, 5 m split times, and sprint kinematics (step frequency and length, flight and contact time). Methods: Fourteen young sprinters, nine females and five males, performed two experimental conditions and one control condition in randomized and crossover orders. The experimental conditions included 3 × 10 repetitions of alternate-leg horizontal bounding or 3 × 5 repetitions of single-leg horizontal bounding for each leg. Active recovery was performed in the control condition. A 30 m sprint test was executed before and 5 min after each condition. Results: Sprint times at 5 m (p = 0.014) and 10 m (p = 0.041) were improved after performing alternate-leg horizontal bounding. Additionally, an increase in running velocity (p = 0.017) and step frequency (p = 0.028) was observed in the 0–5 m segment of the sprint. Sprint performance and kinematics showed no significant differences after performing single-leg horizontal bounding. Conclusions: Alternate-leg horizontal bounding, which is a sprint-specific exercise that emphasizes a horizontal impulse, can be used effectively to improve performance in the initial phase of sprint acceleration.