通过Dirac算子估计带宽

IF 1.3 1区 数学 Q1 MATHEMATICS
Rudolf Zeidler
{"title":"通过Dirac算子估计带宽","authors":"Rudolf Zeidler","doi":"10.4310/jdg/1668186790","DOIUrl":null,"url":null,"abstract":"Let $M$ be a closed connected spin manifold such that its spinor Dirac operator has non-vanishing (Rosenberg) index. We prove that for any Riemannian metric on $V = M \\times [-1,1]$ with scalar curvature bounded below by $\\sigma > 0$, the distance between the boundary components of $V$ is at most $C_n/\\sqrt{\\sigma}$, where $C_n = \\sqrt{(n-1)/{n}} \\cdot C$ with $C < 8(1+\\sqrt{2})$ being a universal constant. This verifies a conjecture of Gromov for such manifolds. In particular, our result applies to all high-dimensional closed simply connected manifolds $M$ which do not admit a metric of positive scalar curvature. We also establish a quadratic decay estimate for the scalar curvature of complete metrics on manifolds, such as $M \\times \\mathbb{R}^2$, which contain $M$ as a codimension two submanifold in a suitable way. Furthermore, we introduce the \"$\\mathcal{KO}$-width\" of a closed manifold and deduce that infinite $\\mathcal{KO}$-width is an obstruction to positive scalar curvature.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Band width estimates via the Dirac operator\",\"authors\":\"Rudolf Zeidler\",\"doi\":\"10.4310/jdg/1668186790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a closed connected spin manifold such that its spinor Dirac operator has non-vanishing (Rosenberg) index. We prove that for any Riemannian metric on $V = M \\\\times [-1,1]$ with scalar curvature bounded below by $\\\\sigma > 0$, the distance between the boundary components of $V$ is at most $C_n/\\\\sqrt{\\\\sigma}$, where $C_n = \\\\sqrt{(n-1)/{n}} \\\\cdot C$ with $C < 8(1+\\\\sqrt{2})$ being a universal constant. This verifies a conjecture of Gromov for such manifolds. In particular, our result applies to all high-dimensional closed simply connected manifolds $M$ which do not admit a metric of positive scalar curvature. We also establish a quadratic decay estimate for the scalar curvature of complete metrics on manifolds, such as $M \\\\times \\\\mathbb{R}^2$, which contain $M$ as a codimension two submanifold in a suitable way. Furthermore, we introduce the \\\"$\\\\mathcal{KO}$-width\\\" of a closed manifold and deduce that infinite $\\\\mathcal{KO}$-width is an obstruction to positive scalar curvature.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1668186790\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1668186790","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 25

摘要

设$M$是闭连通的自旋流形,使其旋量Dirac算子具有不消失(Rosenberg)指数。我们证明了对于$V=M\times[-1,1]$上的任何黎曼度量,其标量曲率以$\sigma>0$为界,$V$的边界分量之间的距离至多为$C_n/\sqrt{\sigma}$,其中$C_n=\sqrt{(n-1)/{n}}\cdot C$,$C<8(1+\sqrt{2})$是通用常数。这验证了Gromov对这类流形的一个猜想。特别地,我们的结果适用于所有不允许正标量曲率度量的高维闭单连通流形$M$。我们还建立了完备度量在流形上的标量曲率的二次衰变估计,如$M\times\mathb{R}^2$,它以适当的方式包含$M$作为余维二个子流形。此外,我们引入了闭流形的“$\mathcal{KO}$-width”,并推导出无穷大的$\mathcal{KO}$-width是正标量曲率的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Band width estimates via the Dirac operator
Let $M$ be a closed connected spin manifold such that its spinor Dirac operator has non-vanishing (Rosenberg) index. We prove that for any Riemannian metric on $V = M \times [-1,1]$ with scalar curvature bounded below by $\sigma > 0$, the distance between the boundary components of $V$ is at most $C_n/\sqrt{\sigma}$, where $C_n = \sqrt{(n-1)/{n}} \cdot C$ with $C < 8(1+\sqrt{2})$ being a universal constant. This verifies a conjecture of Gromov for such manifolds. In particular, our result applies to all high-dimensional closed simply connected manifolds $M$ which do not admit a metric of positive scalar curvature. We also establish a quadratic decay estimate for the scalar curvature of complete metrics on manifolds, such as $M \times \mathbb{R}^2$, which contain $M$ as a codimension two submanifold in a suitable way. Furthermore, we introduce the "$\mathcal{KO}$-width" of a closed manifold and deduce that infinite $\mathcal{KO}$-width is an obstruction to positive scalar curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信