{"title":"对一个空的37单元candu®燃料束进行有限元分析,研究压力管蠕变的影响","authors":"Kyuhwan Lee, D. Wowk, P. Chan","doi":"10.12943/cnr.2020.00003","DOIUrl":null,"url":null,"abstract":"CANDU fuel bundles experience plastic deformations over time, and the horizontal configuration of the bundle in a crept pressure tube (PT) causes coolant to bypass the sagged lower half of the bundle. Bundle segments where the flow is limited may become more susceptible to dryout due to reactor aging. A finite element model of a 37-element fuel bundle was constructed using the commercial finite element software ANSYS to study the mechanical deformation behaviour of the bundle to maintain a coolable geometry. The main focus was on the contact between the fuel elements and between the fuel elements and PT. The complexity of the model due to all the contact pairs necessitated the use of high-powered computing hardware. Contact was demonstrated between the appendages, and sensitivity of the deformation to different boundary conditions (BC) was investigated. In particular, the radial position where the elements were welded to the endplate significantly impacted the magnitude of the element bowing. Expanding the PT up to 8% diametral creep demonstrated the proper functioning of the spacer pads (SP) and bearing pads in preventing sheath-to-sheath contact at the midplane and sheath-to-PT contact. However, the quarter plane was deemed to be the critical region due to the lack of SPs preventing excessive element bowing. This work has successfully illustrated the deformation of a CANDU fuel bundle, with contact, and its similarity with the bow profiles when compared with post-irradiation examination results and bundle heat-up tests.","PeriodicalId":42750,"journal":{"name":"CNL Nuclear Review","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FINITE ELEMENT ANALYSIS OF AN EMPTY 37-ELEMENT CANDU® FUEL BUNDLE TO STUDY THE EFFECTS OF PRESSURE TUBE CREEP\",\"authors\":\"Kyuhwan Lee, D. Wowk, P. Chan\",\"doi\":\"10.12943/cnr.2020.00003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CANDU fuel bundles experience plastic deformations over time, and the horizontal configuration of the bundle in a crept pressure tube (PT) causes coolant to bypass the sagged lower half of the bundle. Bundle segments where the flow is limited may become more susceptible to dryout due to reactor aging. A finite element model of a 37-element fuel bundle was constructed using the commercial finite element software ANSYS to study the mechanical deformation behaviour of the bundle to maintain a coolable geometry. The main focus was on the contact between the fuel elements and between the fuel elements and PT. The complexity of the model due to all the contact pairs necessitated the use of high-powered computing hardware. Contact was demonstrated between the appendages, and sensitivity of the deformation to different boundary conditions (BC) was investigated. In particular, the radial position where the elements were welded to the endplate significantly impacted the magnitude of the element bowing. Expanding the PT up to 8% diametral creep demonstrated the proper functioning of the spacer pads (SP) and bearing pads in preventing sheath-to-sheath contact at the midplane and sheath-to-PT contact. However, the quarter plane was deemed to be the critical region due to the lack of SPs preventing excessive element bowing. This work has successfully illustrated the deformation of a CANDU fuel bundle, with contact, and its similarity with the bow profiles when compared with post-irradiation examination results and bundle heat-up tests.\",\"PeriodicalId\":42750,\"journal\":{\"name\":\"CNL Nuclear Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNL Nuclear Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12943/cnr.2020.00003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNL Nuclear Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12943/cnr.2020.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FINITE ELEMENT ANALYSIS OF AN EMPTY 37-ELEMENT CANDU® FUEL BUNDLE TO STUDY THE EFFECTS OF PRESSURE TUBE CREEP
CANDU fuel bundles experience plastic deformations over time, and the horizontal configuration of the bundle in a crept pressure tube (PT) causes coolant to bypass the sagged lower half of the bundle. Bundle segments where the flow is limited may become more susceptible to dryout due to reactor aging. A finite element model of a 37-element fuel bundle was constructed using the commercial finite element software ANSYS to study the mechanical deformation behaviour of the bundle to maintain a coolable geometry. The main focus was on the contact between the fuel elements and between the fuel elements and PT. The complexity of the model due to all the contact pairs necessitated the use of high-powered computing hardware. Contact was demonstrated between the appendages, and sensitivity of the deformation to different boundary conditions (BC) was investigated. In particular, the radial position where the elements were welded to the endplate significantly impacted the magnitude of the element bowing. Expanding the PT up to 8% diametral creep demonstrated the proper functioning of the spacer pads (SP) and bearing pads in preventing sheath-to-sheath contact at the midplane and sheath-to-PT contact. However, the quarter plane was deemed to be the critical region due to the lack of SPs preventing excessive element bowing. This work has successfully illustrated the deformation of a CANDU fuel bundle, with contact, and its similarity with the bow profiles when compared with post-irradiation examination results and bundle heat-up tests.