{"title":"利用合成孔径雷达散斑跟踪和冰流建模探测和表征加拿大北极高地汤普森冰川的不连续运动","authors":"Giovanni Corti, B. Rabus, G. Flowers","doi":"10.1017/jog.2023.67","DOIUrl":null,"url":null,"abstract":"\n We investigate unusual discontinuous glacier motion on Thompson Glacier, Umingmat Nunaat, Arctic Canada, using synthetic aperture radar (SAR) images and ice-flow modeling. A novel intensity-rescaling scheme is developed to reduce errors in high-resolution speckle tracking, resulting in a ~25% improvement in accuracy. Interferometric SAR (InSAR) and speckle tracking using high resolution RADARSAT-2 data indicate velocity discontinuities of up to 1 cm d−1 across deep and longitudinally extensive supraglacial channels on Thompson Glacier. We use a cross-sectional finite-element ice-flow model to determine the conditions under which velocity discontinuities of the observed magnitude and signature are possible. The modeling suggests that discontinuous motion across (long and straight) supraglacial channels can occur without ice fracture and under a wide variety of glacier thermal structures, including in fully temperate glaciers. Despite the wide range of conditions conducive to discontinuous motion, the form we observe requires that the associated channels be deep, longitudinally extensive and located in regions of lateral shearing. We speculate that these combined conditions are rare except on polythermal glaciers, where drainage features such as moulins are comparatively scarce and lower deformation rates allow channels to incise consistently and persist over many years.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and characterization of discontinuous motion on Thompson Glacier, Canadian High Arctic, using synthetic aperture radar speckle tracking and ice-flow modeling\",\"authors\":\"Giovanni Corti, B. Rabus, G. Flowers\",\"doi\":\"10.1017/jog.2023.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We investigate unusual discontinuous glacier motion on Thompson Glacier, Umingmat Nunaat, Arctic Canada, using synthetic aperture radar (SAR) images and ice-flow modeling. A novel intensity-rescaling scheme is developed to reduce errors in high-resolution speckle tracking, resulting in a ~25% improvement in accuracy. Interferometric SAR (InSAR) and speckle tracking using high resolution RADARSAT-2 data indicate velocity discontinuities of up to 1 cm d−1 across deep and longitudinally extensive supraglacial channels on Thompson Glacier. We use a cross-sectional finite-element ice-flow model to determine the conditions under which velocity discontinuities of the observed magnitude and signature are possible. The modeling suggests that discontinuous motion across (long and straight) supraglacial channels can occur without ice fracture and under a wide variety of glacier thermal structures, including in fully temperate glaciers. Despite the wide range of conditions conducive to discontinuous motion, the form we observe requires that the associated channels be deep, longitudinally extensive and located in regions of lateral shearing. We speculate that these combined conditions are rare except on polythermal glaciers, where drainage features such as moulins are comparatively scarce and lower deformation rates allow channels to incise consistently and persist over many years.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.67\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.67","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们使用合成孔径雷达(SAR)图像和冰流建模,研究了加拿大北极乌明马特-努纳特汤普森冰川上不寻常的不连续冰川运动。开发了一种新的强度重新缩放方案,以减少高分辨率散斑跟踪中的误差,从而使精度提高约25%。干涉SAR(InSAR)和使用高分辨率RADARSAT-2数据的散斑跟踪表明,汤普森冰川上深层和纵向扩展的冰上通道的速度不连续性高达1 cm d−1。我们使用截面有限元冰流模型来确定观测到的幅度和特征的速度不连续性可能存在的条件。该模型表明,在没有冰破裂的情况下,在各种各样的冰川热结构下,包括在全温带冰川中,可以发生跨越(长而直)冰上通道的不连续运动。尽管有利于不连续运动的广泛条件,但我们观察到的形式要求相关通道是深的、纵向延伸的,并且位于横向剪切区域。我们推测,除了多热冰川外,这些综合条件很少见,多热冰川的排水特征(如丘林)相对较少,较低的变形率使通道能够持续切割并持续多年。
Detection and characterization of discontinuous motion on Thompson Glacier, Canadian High Arctic, using synthetic aperture radar speckle tracking and ice-flow modeling
We investigate unusual discontinuous glacier motion on Thompson Glacier, Umingmat Nunaat, Arctic Canada, using synthetic aperture radar (SAR) images and ice-flow modeling. A novel intensity-rescaling scheme is developed to reduce errors in high-resolution speckle tracking, resulting in a ~25% improvement in accuracy. Interferometric SAR (InSAR) and speckle tracking using high resolution RADARSAT-2 data indicate velocity discontinuities of up to 1 cm d−1 across deep and longitudinally extensive supraglacial channels on Thompson Glacier. We use a cross-sectional finite-element ice-flow model to determine the conditions under which velocity discontinuities of the observed magnitude and signature are possible. The modeling suggests that discontinuous motion across (long and straight) supraglacial channels can occur without ice fracture and under a wide variety of glacier thermal structures, including in fully temperate glaciers. Despite the wide range of conditions conducive to discontinuous motion, the form we observe requires that the associated channels be deep, longitudinally extensive and located in regions of lateral shearing. We speculate that these combined conditions are rare except on polythermal glaciers, where drainage features such as moulins are comparatively scarce and lower deformation rates allow channels to incise consistently and persist over many years.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.