基于ARIMA-NN混合模型的短期集装箱船运量预测

Negar Sadeghi Gargari, H. Akbari, R. Panahi
{"title":"基于ARIMA-NN混合模型的短期集装箱船运量预测","authors":"Negar Sadeghi Gargari, H. Akbari, R. Panahi","doi":"10.29252/ijcoe.3.3.47","DOIUrl":null,"url":null,"abstract":"A combination of linear and non-linear models results in a more accurate prediction in comparison with using linear or non-linear models individually to forecast time series data. This paper utilizes the linear autoregressive integrated moving average (ARIMA) model and non-linear artificial neural network (ANN) model to develop a new hybrid ARIMA-ANN model for prediction of container vessel traffic volume. The suggested hybrid method consists of an optimized feed-forward, back-propagation model with a hybrid training algorithm. The database of monthly traffic of Rajaee Port for thirteen years from 2005-2018 is taken into account. The performance of the developed model in forecasting short-term traffic volume is evaluated using various performance criteria such as correlation coefficient (R), mean absolute deviation (MAD), mean squared error (MSE) and mean absolute percentage error (MAPE). The developed model provides useful insights into container traffic behavior. Comparing the results with the real data-sets demonstrates the superior performance of the hybrid models than using models individually in forecasting traffic data.","PeriodicalId":33914,"journal":{"name":"International Journal of Coastal and Offshore Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Short-term Container Vessel Traffic Volume Using Hybrid ARIMA-NN Model\",\"authors\":\"Negar Sadeghi Gargari, H. Akbari, R. Panahi\",\"doi\":\"10.29252/ijcoe.3.3.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A combination of linear and non-linear models results in a more accurate prediction in comparison with using linear or non-linear models individually to forecast time series data. This paper utilizes the linear autoregressive integrated moving average (ARIMA) model and non-linear artificial neural network (ANN) model to develop a new hybrid ARIMA-ANN model for prediction of container vessel traffic volume. The suggested hybrid method consists of an optimized feed-forward, back-propagation model with a hybrid training algorithm. The database of monthly traffic of Rajaee Port for thirteen years from 2005-2018 is taken into account. The performance of the developed model in forecasting short-term traffic volume is evaluated using various performance criteria such as correlation coefficient (R), mean absolute deviation (MAD), mean squared error (MSE) and mean absolute percentage error (MAPE). The developed model provides useful insights into container traffic behavior. Comparing the results with the real data-sets demonstrates the superior performance of the hybrid models than using models individually in forecasting traffic data.\",\"PeriodicalId\":33914,\"journal\":{\"name\":\"International Journal of Coastal and Offshore Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coastal and Offshore Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/ijcoe.3.3.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coastal and Offshore Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/ijcoe.3.3.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与单独使用线性或非线性模型来预测时间序列数据相比,线性和非线性模型的组合导致更准确的预测。本文利用线性自回归综合移动平均(ARIMA)模型和非线性人工神经网络(ANN)模型,建立了一种新的集装箱船舶交通量预测的混合ARIMA-ANN模型。所提出的混合方法包括一个优化的前馈、反向传播模型和一个混合训练算法。考虑了Rajaee港2005-2018年13年的月度交通量数据库。使用各种性能标准,如相关系数(R)、平均绝对偏差(MAD)、均方误差(MSE)和平均绝对百分比误差(MAPE),来评估所开发的模型在预测短期交通量方面的性能。所开发的模型为集装箱交通行为提供了有用的见解。将结果与真实数据集进行比较表明,在预测交通数据方面,混合模型比单独使用模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Short-term Container Vessel Traffic Volume Using Hybrid ARIMA-NN Model
A combination of linear and non-linear models results in a more accurate prediction in comparison with using linear or non-linear models individually to forecast time series data. This paper utilizes the linear autoregressive integrated moving average (ARIMA) model and non-linear artificial neural network (ANN) model to develop a new hybrid ARIMA-ANN model for prediction of container vessel traffic volume. The suggested hybrid method consists of an optimized feed-forward, back-propagation model with a hybrid training algorithm. The database of monthly traffic of Rajaee Port for thirteen years from 2005-2018 is taken into account. The performance of the developed model in forecasting short-term traffic volume is evaluated using various performance criteria such as correlation coefficient (R), mean absolute deviation (MAD), mean squared error (MSE) and mean absolute percentage error (MAPE). The developed model provides useful insights into container traffic behavior. Comparing the results with the real data-sets demonstrates the superior performance of the hybrid models than using models individually in forecasting traffic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信