Alessandro G. Laporta, Susanna Levantesi, L. Petrella
{"title":"分位数索赔金额估计的神经网络:一种分位数回归方法","authors":"Alessandro G. Laporta, Susanna Levantesi, L. Petrella","doi":"10.1017/s1748499523000106","DOIUrl":null,"url":null,"abstract":"\n In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural networks for quantile claim amount estimation: a quantile regression approach\",\"authors\":\"Alessandro G. Laporta, Susanna Levantesi, L. Petrella\",\"doi\":\"10.1017/s1748499523000106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1748499523000106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499523000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Neural networks for quantile claim amount estimation: a quantile regression approach
In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation.