正则化Prabhakar导数在偏微分方程中的应用

IF 1.1 Q2 MATHEMATICS, APPLIED
Ahmed Bokhari, D. Baleanu, Rachid Belgacem
{"title":"正则化Prabhakar导数在偏微分方程中的应用","authors":"Ahmed Bokhari, D. Baleanu, Rachid Belgacem","doi":"10.22034/CMDE.2021.39677.1736","DOIUrl":null,"url":null,"abstract":"Prabhakar fractional operator was applied recently for studying the dynamics of complex systems from several branches of sciences and engineering. In this manuscript we discuss the regularized Prabhakar derivative applied to fractional partial differential equations using the Sumudu homotopy analysis method(PSHAM). Three illustrative examples are investigated to confirm our main results.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularized Prabhakar Derivative Applications to Partial Differential Equations\",\"authors\":\"Ahmed Bokhari, D. Baleanu, Rachid Belgacem\",\"doi\":\"10.22034/CMDE.2021.39677.1736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prabhakar fractional operator was applied recently for studying the dynamics of complex systems from several branches of sciences and engineering. In this manuscript we discuss the regularized Prabhakar derivative applied to fractional partial differential equations using the Sumudu homotopy analysis method(PSHAM). Three illustrative examples are investigated to confirm our main results.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.39677.1736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.39677.1736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Prabhakar分数算子最近被应用于科学和工程的几个分支,用于研究复杂系统的动力学。在这篇文章中,我们讨论了正则化Prabhakar导数应用于分数偏微分方程的Sumudu同源分析方法(PSHAM)。研究了三个说明性的例子来证实我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized Prabhakar Derivative Applications to Partial Differential Equations
Prabhakar fractional operator was applied recently for studying the dynamics of complex systems from several branches of sciences and engineering. In this manuscript we discuss the regularized Prabhakar derivative applied to fractional partial differential equations using the Sumudu homotopy analysis method(PSHAM). Three illustrative examples are investigated to confirm our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信