基于人工势场法的全局路径引导车辆避障路径规划

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Yangde Chen, Peiliang Wang, Zichen Lin, Chenhao Sun
{"title":"基于人工势场法的全局路径引导车辆避障路径规划","authors":"Yangde Chen,&nbsp;Peiliang Wang,&nbsp;Zichen Lin,&nbsp;Chenhao Sun","doi":"10.1049/csy2.12082","DOIUrl":null,"url":null,"abstract":"<p>An artificial potential field method based on global path guidance (G-APF) is proposed for target unreachability and local minima problems of the conventional artificial potential field (APF) method in complex environments with dynamic obstacles. First, for the target unreachability problem, the global path attraction is added to the APF; second, an obstacle detection optimisation method is proposed and the optimal virtual target point is selected by setting the evaluation function to improve the local minima problem; finally, based on the obstacle detection optimisation method, the gravitational and repulsive processes are improved so that the path can pass through the narrow channel smoothly and remain collision-free. Experiments show that the method optimises 40.8% of the total path corners, reduces 81.8% of the number of path oscillations, and shortens 4.3% of the path length in Map 1. It can be applied to the vehicle obstacle avoidance path planning problem in complex environments with dynamic obstacles.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12082","citationCount":"1","resultStr":"{\"title\":\"Global path guided vehicle obstacle avoidance path planning with artificial potential field method\",\"authors\":\"Yangde Chen,&nbsp;Peiliang Wang,&nbsp;Zichen Lin,&nbsp;Chenhao Sun\",\"doi\":\"10.1049/csy2.12082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An artificial potential field method based on global path guidance (G-APF) is proposed for target unreachability and local minima problems of the conventional artificial potential field (APF) method in complex environments with dynamic obstacles. First, for the target unreachability problem, the global path attraction is added to the APF; second, an obstacle detection optimisation method is proposed and the optimal virtual target point is selected by setting the evaluation function to improve the local minima problem; finally, based on the obstacle detection optimisation method, the gravitational and repulsive processes are improved so that the path can pass through the narrow channel smoothly and remain collision-free. Experiments show that the method optimises 40.8% of the total path corners, reduces 81.8% of the number of path oscillations, and shortens 4.3% of the path length in Map 1. It can be applied to the vehicle obstacle avoidance path planning problem in complex environments with dynamic obstacles.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12082\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

针对传统人工势场法在具有动态障碍物的复杂环境中存在的目标不可达性和局部极小问题,提出了一种基于全局路径制导的人工势场法。首先,针对目标不可达性问题,在APF中加入全局路径吸引;其次,提出了一种障碍物检测优化方法,通过设置评价函数选择最优虚拟目标点,改进了局部极小问题;最后,在障碍物检测优化方法的基础上,对引力和斥力过程进行改进,使路径能够顺利通过窄通道并保持无碰撞。实验表明,该方法优化了40.8%的路径角,减少了81.8%的路径振荡次数,缩短了4.3%的路径长度。该方法可应用于具有动态障碍物的复杂环境下的车辆避障路径规划问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global path guided vehicle obstacle avoidance path planning with artificial potential field method

Global path guided vehicle obstacle avoidance path planning with artificial potential field method

An artificial potential field method based on global path guidance (G-APF) is proposed for target unreachability and local minima problems of the conventional artificial potential field (APF) method in complex environments with dynamic obstacles. First, for the target unreachability problem, the global path attraction is added to the APF; second, an obstacle detection optimisation method is proposed and the optimal virtual target point is selected by setting the evaluation function to improve the local minima problem; finally, based on the obstacle detection optimisation method, the gravitational and repulsive processes are improved so that the path can pass through the narrow channel smoothly and remain collision-free. Experiments show that the method optimises 40.8% of the total path corners, reduces 81.8% of the number of path oscillations, and shortens 4.3% of the path length in Map 1. It can be applied to the vehicle obstacle avoidance path planning problem in complex environments with dynamic obstacles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信