k近邻贝叶斯算法与naÏve贝叶斯算法在乳腺癌分类中的比较

Irma Handayani, Ikrimach Ikrimach
{"title":"k近邻贝叶斯算法与naÏve贝叶斯算法在乳腺癌分类中的比较","authors":"Irma Handayani, Ikrimach Ikrimach","doi":"10.56327/ijiscs.v5i1.953","DOIUrl":null,"url":null,"abstract":"Classification is widely used to determine decisions according to new knowledge gained from processing past data using algorithms. The number of attributes can affect the performance of an algorithm. Several data mining methods that are widely used for classification include the K-Nearest Neighbor and naïve Bayes algorithm. The best algorithm for one data type is not necessarily good for another data type. It is even possible that a good algorithm will be horrendous for other data types. To overcome this issue, this study will analyze the accuracy of the K-Nearest Neighbor and Naïve Bayes algorithms for the classification of breast cancer. So that patients with existing parameters can be predicted which are malignant and benign breast cancer. This pattern can be used as a diagnostic measure so that the cancer can be detected earlier and is expected to reduce the mortality rate from breast cancer.","PeriodicalId":32370,"journal":{"name":"IJISCS International Journal of Information System and Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMPARISON OF K-NEAREST NEIGHBOR AND NAÏVE BAYES FOR BREAST CANCER CLASSIFICATION USING PYTHON\",\"authors\":\"Irma Handayani, Ikrimach Ikrimach\",\"doi\":\"10.56327/ijiscs.v5i1.953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is widely used to determine decisions according to new knowledge gained from processing past data using algorithms. The number of attributes can affect the performance of an algorithm. Several data mining methods that are widely used for classification include the K-Nearest Neighbor and naïve Bayes algorithm. The best algorithm for one data type is not necessarily good for another data type. It is even possible that a good algorithm will be horrendous for other data types. To overcome this issue, this study will analyze the accuracy of the K-Nearest Neighbor and Naïve Bayes algorithms for the classification of breast cancer. So that patients with existing parameters can be predicted which are malignant and benign breast cancer. This pattern can be used as a diagnostic measure so that the cancer can be detected earlier and is expected to reduce the mortality rate from breast cancer.\",\"PeriodicalId\":32370,\"journal\":{\"name\":\"IJISCS International Journal of Information System and Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJISCS International Journal of Information System and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56327/ijiscs.v5i1.953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJISCS International Journal of Information System and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56327/ijiscs.v5i1.953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分类被广泛用于根据使用算法处理过去数据所获得的新知识来确定决策。属性的数量可以影响算法的性能。几种广泛用于分类的数据挖掘方法包括K-最近邻和朴素贝叶斯算法。一种数据类型的最佳算法不一定适用于另一种数据。对于其他数据类型来说,一个好的算法甚至可能是可怕的。为了克服这个问题,本研究将分析K-Nearest Neighbor和Naïve Bayes算法在癌症分类中的准确性。从而可以预测具有现有参数的癌症患者是恶性还是良性。这种模式可以用作诊断措施,从而可以更早地发现癌症,并有望降低癌症的死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPARISON OF K-NEAREST NEIGHBOR AND NAÏVE BAYES FOR BREAST CANCER CLASSIFICATION USING PYTHON
Classification is widely used to determine decisions according to new knowledge gained from processing past data using algorithms. The number of attributes can affect the performance of an algorithm. Several data mining methods that are widely used for classification include the K-Nearest Neighbor and naïve Bayes algorithm. The best algorithm for one data type is not necessarily good for another data type. It is even possible that a good algorithm will be horrendous for other data types. To overcome this issue, this study will analyze the accuracy of the K-Nearest Neighbor and Naïve Bayes algorithms for the classification of breast cancer. So that patients with existing parameters can be predicted which are malignant and benign breast cancer. This pattern can be used as a diagnostic measure so that the cancer can be detected earlier and is expected to reduce the mortality rate from breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信