在由多项式空间曲线演化构造的直纹曲面上

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
K. Eren, K. H. Ayvaci, S. Şenyurt
{"title":"在由多项式空间曲线演化构造的直纹曲面上","authors":"K. Eren, K. H. Ayvaci, S. Şenyurt","doi":"10.46939/j.sci.arts-23.1-a06","DOIUrl":null,"url":null,"abstract":"In this paper, we present the evolutions of the ruled surfaces constructed by the tangent, normal-like, and binormal-like vector fields of a polynomial space curve. These evolutions of the ruled surfaces depend on the evolutions of their directrices using the Flc (Frenet like curve) frame along a polynomial space curve. Therefore, the evolutions of a polynomial curve are expressed in the first step of this study. Then, some geometric properties of the special ruled surfaces are investigated and examples of these surfaces are given and their graphics are drawn using the Mathematica 9 program.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON RULED SURFACES CONSTRUCTED BY THE EVOLUTION OF A POLYNOMIAL SPACE CURVE\",\"authors\":\"K. Eren, K. H. Ayvaci, S. Şenyurt\",\"doi\":\"10.46939/j.sci.arts-23.1-a06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the evolutions of the ruled surfaces constructed by the tangent, normal-like, and binormal-like vector fields of a polynomial space curve. These evolutions of the ruled surfaces depend on the evolutions of their directrices using the Flc (Frenet like curve) frame along a polynomial space curve. Therefore, the evolutions of a polynomial curve are expressed in the first step of this study. Then, some geometric properties of the special ruled surfaces are investigated and examples of these surfaces are given and their graphics are drawn using the Mathematica 9 program.\",\"PeriodicalId\":54169,\"journal\":{\"name\":\"Journal of Science and Arts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46939/j.sci.arts-23.1-a06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.1-a06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了由多项式空间曲线的正切、类法线和类binormal向量场构造的规则曲面的演化。直纹曲面的这些演化取决于它们的直向的演化,该直向使用沿着多项式空间曲线的Flc(Frenet样曲线)框架。因此,多项式曲线的演化在本研究的第一步中得到了表达。然后,研究了特殊规则曲面的一些几何性质,给出了这些曲面的例子,并用Mathematica9程序绘制了它们的图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON RULED SURFACES CONSTRUCTED BY THE EVOLUTION OF A POLYNOMIAL SPACE CURVE
In this paper, we present the evolutions of the ruled surfaces constructed by the tangent, normal-like, and binormal-like vector fields of a polynomial space curve. These evolutions of the ruled surfaces depend on the evolutions of their directrices using the Flc (Frenet like curve) frame along a polynomial space curve. Therefore, the evolutions of a polynomial curve are expressed in the first step of this study. Then, some geometric properties of the special ruled surfaces are investigated and examples of these surfaces are given and their graphics are drawn using the Mathematica 9 program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信