HK傅立叶变换的插值理论

IF 0.6 4区 数学 Q3 MATHEMATICS
J. H. Arredondo, Alfredo Reyes
{"title":"HK傅立叶变换的插值理论","authors":"J. H. Arredondo, Alfredo Reyes","doi":"10.33044/revuma.1911","DOIUrl":null,"url":null,"abstract":". We use the Henstock–Kurzweil integral and interpolation theory to extend the Fourier cosine transform operator, broadening some classical properties such as the Riemann–Lebesgue lemma. Furthermore, we show that a qualitative difference between the cosine and sine transform is preserved on differentiable functions.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interpolation theory for the HK-Fourier transform\",\"authors\":\"J. H. Arredondo, Alfredo Reyes\",\"doi\":\"10.33044/revuma.1911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We use the Henstock–Kurzweil integral and interpolation theory to extend the Fourier cosine transform operator, broadening some classical properties such as the Riemann–Lebesgue lemma. Furthermore, we show that a qualitative difference between the cosine and sine transform is preserved on differentiable functions.\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.1911\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.1911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

.我们使用Henstock–Kurzweil积分和插值理论来扩展傅立叶余弦变换算子,拓宽了一些经典性质,如Riemann–Lebesgue引理。此外,我们证明了余弦变换和正弦变换之间的定性差异在不同的函数上保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolation theory for the HK-Fourier transform
. We use the Henstock–Kurzweil integral and interpolation theory to extend the Fourier cosine transform operator, broadening some classical properties such as the Riemann–Lebesgue lemma. Furthermore, we show that a qualitative difference between the cosine and sine transform is preserved on differentiable functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信