Kouros Zanbouri, H. M. Al-Khafaji, N. J. Navimipour, Senay Yalçin
{"title":"基于模糊量子遗传算法的多媒体物联网基于雾的传输调度","authors":"Kouros Zanbouri, H. M. Al-Khafaji, N. J. Navimipour, Senay Yalçin","doi":"10.1109/MMUL.2023.3247522","DOIUrl":null,"url":null,"abstract":"The Internet of Multimedia Things (IoMT) has recently experienced a considerable surge in multimedia-based services. Due to the fast proliferation and transfer of massive data, the IoMT has service quality challenges. This article proposes a novel fog-based multimedia transmission scheme for the IoMT using the Sugano interference system with a quantum genetic optimization algorithm. The fuzzy system devises a mathematically organized strategy for generating fuzzy rules from input and output variables. The quantum genetic algorithm (QGA) is a metaheuristic algorithm that combines genetic algorithms and quantum computing theory. It combines many critical elements of quantum computing, such as quantum superposition and entanglement. This provides a robust representation of population diversity and the capacity to achieve rapid convergence and high accuracy. As a result of the simulations and computational analysis, the proposed fuzzy-based QGA scheme improves the packet delivery ratio and throughput by reducing end-to-end latency and delay when compared to traditional algorithms like genetic algorithm, particle swarm optimization, heterogeneous earliest finish time, and ant colony optimization. Consequently, it provides a more efficient scheme for multimedia transmission in the IoMT.","PeriodicalId":13240,"journal":{"name":"IEEE MultiMedia","volume":"30 1","pages":"74-86"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Fog-Based Transmission Scheduler on the Internet of Multimedia Things Using a Fuzzy-Based Quantum Genetic Algorithm\",\"authors\":\"Kouros Zanbouri, H. M. Al-Khafaji, N. J. Navimipour, Senay Yalçin\",\"doi\":\"10.1109/MMUL.2023.3247522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Multimedia Things (IoMT) has recently experienced a considerable surge in multimedia-based services. Due to the fast proliferation and transfer of massive data, the IoMT has service quality challenges. This article proposes a novel fog-based multimedia transmission scheme for the IoMT using the Sugano interference system with a quantum genetic optimization algorithm. The fuzzy system devises a mathematically organized strategy for generating fuzzy rules from input and output variables. The quantum genetic algorithm (QGA) is a metaheuristic algorithm that combines genetic algorithms and quantum computing theory. It combines many critical elements of quantum computing, such as quantum superposition and entanglement. This provides a robust representation of population diversity and the capacity to achieve rapid convergence and high accuracy. As a result of the simulations and computational analysis, the proposed fuzzy-based QGA scheme improves the packet delivery ratio and throughput by reducing end-to-end latency and delay when compared to traditional algorithms like genetic algorithm, particle swarm optimization, heterogeneous earliest finish time, and ant colony optimization. Consequently, it provides a more efficient scheme for multimedia transmission in the IoMT.\",\"PeriodicalId\":13240,\"journal\":{\"name\":\"IEEE MultiMedia\",\"volume\":\"30 1\",\"pages\":\"74-86\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE MultiMedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MMUL.2023.3247522\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MultiMedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MMUL.2023.3247522","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A New Fog-Based Transmission Scheduler on the Internet of Multimedia Things Using a Fuzzy-Based Quantum Genetic Algorithm
The Internet of Multimedia Things (IoMT) has recently experienced a considerable surge in multimedia-based services. Due to the fast proliferation and transfer of massive data, the IoMT has service quality challenges. This article proposes a novel fog-based multimedia transmission scheme for the IoMT using the Sugano interference system with a quantum genetic optimization algorithm. The fuzzy system devises a mathematically organized strategy for generating fuzzy rules from input and output variables. The quantum genetic algorithm (QGA) is a metaheuristic algorithm that combines genetic algorithms and quantum computing theory. It combines many critical elements of quantum computing, such as quantum superposition and entanglement. This provides a robust representation of population diversity and the capacity to achieve rapid convergence and high accuracy. As a result of the simulations and computational analysis, the proposed fuzzy-based QGA scheme improves the packet delivery ratio and throughput by reducing end-to-end latency and delay when compared to traditional algorithms like genetic algorithm, particle swarm optimization, heterogeneous earliest finish time, and ant colony optimization. Consequently, it provides a more efficient scheme for multimedia transmission in the IoMT.
期刊介绍:
The magazine contains technical information covering a broad range of issues in multimedia systems and applications. Articles discuss research as well as advanced practice in hardware/software and are expected to span the range from theory to working systems. Especially encouraged are papers discussing experiences with new or advanced systems and subsystems. To avoid unnecessary overlap with existing publications, acceptable papers must have a significant focus on aspects unique to multimedia systems and applications. These aspects are likely to be related to the special needs of multimedia information compared to other electronic data, for example, the size requirements of digital media and the importance of time in the representation of such media. The following list is not exhaustive, but is representative of the topics that are covered: Hardware and software for media compression, coding & processing; Media representations & standards for storage, editing, interchange, transmission & presentation; Hardware platforms supporting multimedia applications; Operating systems suitable for multimedia applications; Storage devices & technologies for multimedia information; Network technologies, protocols, architectures & delivery techniques intended for multimedia; Synchronization issues; Multimedia databases; Formalisms for multimedia information systems & applications; Programming paradigms & languages for multimedia; Multimedia user interfaces; Media creation integration editing & management; Creation & modification of multimedia applications.