{"title":"人群排队模拟中基于个性的情绪传染与控制模型","authors":"Junxiao Xue, Mingchuan Zhang, Hui Yin","doi":"10.1145/3577589","DOIUrl":null,"url":null,"abstract":"Queuing is a frequent daily activity. However, long waiting lines equate to frustration and potential safety hazards. We present a novel, personality-based model of emotional contagion and control for simulating crowd queuing. Our model integrates the influence of individual personalities and interpersonal relationships. Through the interaction between the agents and the external environment parameters, the emotional contagion model based on well-known theories in psychology is used to complete the agents’ behavior planning and path planning function. We combine the epidemiological SIR model with the cellular automaton model to capture various emotional modelling for multi-agent simulations. The overall formulation involves different emotional parameters, such as patience, urgency, and friendliness, closely related to crowd queuing. In addition, to manage the order of the queue, governing agents are added to prevent the emotional outbreak. We perform qualitative and quantitative comparisons between our simulation results and real-world observations on various scenarios. Numerous experiments show that reasonably increasing the queue channel and adding governing agents can effectively improve the quality of queues.","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Personality-based Model of Emotional Contagion and Control in Crowd Queuing Simulations\",\"authors\":\"Junxiao Xue, Mingchuan Zhang, Hui Yin\",\"doi\":\"10.1145/3577589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Queuing is a frequent daily activity. However, long waiting lines equate to frustration and potential safety hazards. We present a novel, personality-based model of emotional contagion and control for simulating crowd queuing. Our model integrates the influence of individual personalities and interpersonal relationships. Through the interaction between the agents and the external environment parameters, the emotional contagion model based on well-known theories in psychology is used to complete the agents’ behavior planning and path planning function. We combine the epidemiological SIR model with the cellular automaton model to capture various emotional modelling for multi-agent simulations. The overall formulation involves different emotional parameters, such as patience, urgency, and friendliness, closely related to crowd queuing. In addition, to manage the order of the queue, governing agents are added to prevent the emotional outbreak. We perform qualitative and quantitative comparisons between our simulation results and real-world observations on various scenarios. Numerous experiments show that reasonably increasing the queue channel and adding governing agents can effectively improve the quality of queues.\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3577589\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3577589","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Personality-based Model of Emotional Contagion and Control in Crowd Queuing Simulations
Queuing is a frequent daily activity. However, long waiting lines equate to frustration and potential safety hazards. We present a novel, personality-based model of emotional contagion and control for simulating crowd queuing. Our model integrates the influence of individual personalities and interpersonal relationships. Through the interaction between the agents and the external environment parameters, the emotional contagion model based on well-known theories in psychology is used to complete the agents’ behavior planning and path planning function. We combine the epidemiological SIR model with the cellular automaton model to capture various emotional modelling for multi-agent simulations. The overall formulation involves different emotional parameters, such as patience, urgency, and friendliness, closely related to crowd queuing. In addition, to manage the order of the queue, governing agents are added to prevent the emotional outbreak. We perform qualitative and quantitative comparisons between our simulation results and real-world observations on various scenarios. Numerous experiments show that reasonably increasing the queue channel and adding governing agents can effectively improve the quality of queues.
期刊介绍:
The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods.
The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.