用于犯罪模式分析的有监督和无监督机器学习方法

D. Sardana, S. Marwaha, R. Bhatnagar
{"title":"用于犯罪模式分析的有监督和无监督机器学习方法","authors":"D. Sardana, S. Marwaha, R. Bhatnagar","doi":"10.5121/IJAIA.2021.12106","DOIUrl":null,"url":null,"abstract":"Crime is a grave problem that affects all countries in the world. The level of crime in a country has a big impact on its economic growth and quality of life of citizens. In this paper, we provide a survey of trends of supervised and unsupervised machine learning methods used for crime pattern analysis. We use a spatiotemporal dataset of crimes in San Francisco, CA to demonstrate some of these strategies for crime analysis. We use classification models, namely, Logistic Regression, Random Forest, Gradient Boosting and Naive Bayes to predict crime types such as Larceny, Theft, etc. and propose model optimization strategies. Further, we use a graph based unsupervised machine learning technique called core periphery structures to analyze how crime behavior evolves over time. These methods can be generalized to use for different counties and can be greatly helpful in planning police task forces for law enforcement and crime prevention.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"83-99"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Supervised and Unsupervised Machine Learning Methodologies for Crime Pattern Analysis\",\"authors\":\"D. Sardana, S. Marwaha, R. Bhatnagar\",\"doi\":\"10.5121/IJAIA.2021.12106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crime is a grave problem that affects all countries in the world. The level of crime in a country has a big impact on its economic growth and quality of life of citizens. In this paper, we provide a survey of trends of supervised and unsupervised machine learning methods used for crime pattern analysis. We use a spatiotemporal dataset of crimes in San Francisco, CA to demonstrate some of these strategies for crime analysis. We use classification models, namely, Logistic Regression, Random Forest, Gradient Boosting and Naive Bayes to predict crime types such as Larceny, Theft, etc. and propose model optimization strategies. Further, we use a graph based unsupervised machine learning technique called core periphery structures to analyze how crime behavior evolves over time. These methods can be generalized to use for different counties and can be greatly helpful in planning police task forces for law enforcement and crime prevention.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\"12 1\",\"pages\":\"83-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2021.12106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2021.12106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

犯罪是一个影响世界各国的严重问题。一个国家的犯罪水平对其经济增长和公民生活质量有很大影响。在本文中,我们对用于犯罪模式分析的有监督和无监督机器学习方法的趋势进行了调查。我们使用加利福尼亚州旧金山的犯罪时空数据集来演示其中一些犯罪分析策略。我们使用分类模型,即逻辑回归、随机森林、梯度提升和朴素贝叶斯来预测盗窃、盗窃等犯罪类型,并提出模型优化策略。此外,我们使用一种名为核心-外围结构的基于图的无监督机器学习技术来分析犯罪行为如何随着时间的推移而演变。这些方法可以推广到不同的县,对规划执法和预防犯罪的警察工作队有很大帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised and Unsupervised Machine Learning Methodologies for Crime Pattern Analysis
Crime is a grave problem that affects all countries in the world. The level of crime in a country has a big impact on its economic growth and quality of life of citizens. In this paper, we provide a survey of trends of supervised and unsupervised machine learning methods used for crime pattern analysis. We use a spatiotemporal dataset of crimes in San Francisco, CA to demonstrate some of these strategies for crime analysis. We use classification models, namely, Logistic Regression, Random Forest, Gradient Boosting and Naive Bayes to predict crime types such as Larceny, Theft, etc. and propose model optimization strategies. Further, we use a graph based unsupervised machine learning technique called core periphery structures to analyze how crime behavior evolves over time. These methods can be generalized to use for different counties and can be greatly helpful in planning police task forces for law enforcement and crime prevention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信