{"title":"208–233 GHz倍频器,在28 nm CMOS中具有1.1%的功率添加效率","authors":"Hai-Hong Fu, Kai Li, Kaixue Ma","doi":"10.1109/LMWC.2022.3180082","DOIUrl":null,"url":null,"abstract":"This letter presents a fully integrated frequency doubler in the TSMC 28-nm CMOS technology. MOS transistor capacitor neutralization is introduced in the differential driving amplifier, which shows better robustness than MOM capacitor neutralization under PVT variations. Besides, a stacked transformer-based balun is designed to achieve good balance performance. The effect of dummy metal on the performance of the proposed balun is also discussed. The measured results show that the 3-dB bandwidth is 25 GHz (208–233 GHz) and the peak power-added efficiency is 1.1% with a dc power consumption of 26.4 mW at 222 GHz. The peak conversion gain is −7.2 dB and the variation in conversion gain is less than 1 dB within −7- to 1-dBm input power range. Moreover, the chip size is $492\\times 412\\,\\,\\mu \\text{m}^{2}$ , including GSG and DC pads.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1311-1314"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 208–233-GHz Frequency Doubler With 1.1% Power-Added Efficiency in 28-nm CMOS\",\"authors\":\"Hai-Hong Fu, Kai Li, Kaixue Ma\",\"doi\":\"10.1109/LMWC.2022.3180082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a fully integrated frequency doubler in the TSMC 28-nm CMOS technology. MOS transistor capacitor neutralization is introduced in the differential driving amplifier, which shows better robustness than MOM capacitor neutralization under PVT variations. Besides, a stacked transformer-based balun is designed to achieve good balance performance. The effect of dummy metal on the performance of the proposed balun is also discussed. The measured results show that the 3-dB bandwidth is 25 GHz (208–233 GHz) and the peak power-added efficiency is 1.1% with a dc power consumption of 26.4 mW at 222 GHz. The peak conversion gain is −7.2 dB and the variation in conversion gain is less than 1 dB within −7- to 1-dBm input power range. Moreover, the chip size is $492\\\\times 412\\\\,\\\\,\\\\mu \\\\text{m}^{2}$ , including GSG and DC pads.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1311-1314\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3180082\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3180082","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 208–233-GHz Frequency Doubler With 1.1% Power-Added Efficiency in 28-nm CMOS
This letter presents a fully integrated frequency doubler in the TSMC 28-nm CMOS technology. MOS transistor capacitor neutralization is introduced in the differential driving amplifier, which shows better robustness than MOM capacitor neutralization under PVT variations. Besides, a stacked transformer-based balun is designed to achieve good balance performance. The effect of dummy metal on the performance of the proposed balun is also discussed. The measured results show that the 3-dB bandwidth is 25 GHz (208–233 GHz) and the peak power-added efficiency is 1.1% with a dc power consumption of 26.4 mW at 222 GHz. The peak conversion gain is −7.2 dB and the variation in conversion gain is less than 1 dB within −7- to 1-dBm input power range. Moreover, the chip size is $492\times 412\,\,\mu \text{m}^{2}$ , including GSG and DC pads.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.