对数凸密度实线上的双气泡

IF 0.9 3区 数学 Q2 MATHEMATICS
Eliot Bongiovanni, Leonardo Di Giosia, Alejandro Diaz, Jahangir Habib, Arjun Kakkar, Lea Kenigsberg, Dylanger S. Pittman, Nat Sothanaphan, Weitao Zhu
{"title":"对数凸密度实线上的双气泡","authors":"Eliot Bongiovanni, Leonardo Di Giosia, Alejandro Diaz, Jahangir Habib, Arjun Kakkar, Lea Kenigsberg, Dylanger S. Pittman, Nat Sothanaphan, Weitao Zhu","doi":"10.1515/agms-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝN is the standard double bubble. We seek the optimal double bubble in ℝN with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"6 1","pages":"64 - 88"},"PeriodicalIF":0.9000,"publicationDate":"2017-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0004","citationCount":"5","resultStr":"{\"title\":\"Double Bubbles on the Real Line with Log-Convex Density\",\"authors\":\"Eliot Bongiovanni, Leonardo Di Giosia, Alejandro Diaz, Jahangir Habib, Arjun Kakkar, Lea Kenigsberg, Dylanger S. Pittman, Nat Sothanaphan, Weitao Zhu\",\"doi\":\"10.1515/agms-2018-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝN is the standard double bubble. We seek the optimal double bubble in ℝN with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"6 1\",\"pages\":\"64 - 88\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2018-0004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2018-0004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要经典的双气泡定理指出,在ℝN是标准的双气泡。我们在ℝN与密度的关系,我们假设它是严格对数凸的。对于N=1,我们证明了解有时是两个连续区间,有时是三个连续区间。在更高的维度中,我们认为解决方案有时是标准的双气泡,有时是同心球(例如,一个体积小,另一个体积大)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Bubbles on the Real Line with Log-Convex Density
Abstract The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝN is the standard double bubble. We seek the optimal double bubble in ℝN with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信