Eliot Bongiovanni, Leonardo Di Giosia, Alejandro Diaz, Jahangir Habib, Arjun Kakkar, Lea Kenigsberg, Dylanger S. Pittman, Nat Sothanaphan, Weitao Zhu
{"title":"对数凸密度实线上的双气泡","authors":"Eliot Bongiovanni, Leonardo Di Giosia, Alejandro Diaz, Jahangir Habib, Arjun Kakkar, Lea Kenigsberg, Dylanger S. Pittman, Nat Sothanaphan, Weitao Zhu","doi":"10.1515/agms-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝN is the standard double bubble. We seek the optimal double bubble in ℝN with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"6 1","pages":"64 - 88"},"PeriodicalIF":0.9000,"publicationDate":"2017-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0004","citationCount":"5","resultStr":"{\"title\":\"Double Bubbles on the Real Line with Log-Convex Density\",\"authors\":\"Eliot Bongiovanni, Leonardo Di Giosia, Alejandro Diaz, Jahangir Habib, Arjun Kakkar, Lea Kenigsberg, Dylanger S. Pittman, Nat Sothanaphan, Weitao Zhu\",\"doi\":\"10.1515/agms-2018-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝN is the standard double bubble. We seek the optimal double bubble in ℝN with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"6 1\",\"pages\":\"64 - 88\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2018-0004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2018-0004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Double Bubbles on the Real Line with Log-Convex Density
Abstract The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in ℝN is the standard double bubble. We seek the optimal double bubble in ℝN with density, which we assume to be strictly log-convex. For N = 1 we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large).
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.