双阈值变量自回归模型定序的贝叶斯推理

IF 0.7 4区 经济学 Q3 ECONOMICS
Xiaobing Zheng, Qiang Xia, Rubing Liang
{"title":"双阈值变量自回归模型定序的贝叶斯推理","authors":"Xiaobing Zheng, Qiang Xia, Rubing Liang","doi":"10.1515/snde-2020-0096","DOIUrl":null,"url":null,"abstract":"Abstract The reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm can generate a jump Markov chain in the parameter space of different dimensions, and select a suitable model effectively. In this paper, when the order of the double threshold variables autoregressive (DT-AR) is unknown, the RJMCMC method is designed to identify the order of the DT-AR model in this paper. The simulation experiments and the real example show that the proposed method works well in identifying the order and estimating the parameters of the DT-AR model simultaneously.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian inference for order determination of double threshold variables autoregressive models\",\"authors\":\"Xiaobing Zheng, Qiang Xia, Rubing Liang\",\"doi\":\"10.1515/snde-2020-0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm can generate a jump Markov chain in the parameter space of different dimensions, and select a suitable model effectively. In this paper, when the order of the double threshold variables autoregressive (DT-AR) is unknown, the RJMCMC method is designed to identify the order of the DT-AR model in this paper. The simulation experiments and the real example show that the proposed method works well in identifying the order and estimating the parameters of the DT-AR model simultaneously.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2020-0096\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0096","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要可逆跳马尔可夫链蒙特卡罗(RJMCMC)算法可以在不同维度的参数空间中生成跳马尔可夫链,并有效地选择合适的模型。在本文中,当双阈值变量自回归(DT-AR)的阶数未知时,本文设计了RJMCMC方法来识别DT-AR模型的阶数。仿真实验和实际算例表明,该方法能很好地同时识别DT-AR模型的阶数和估计参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference for order determination of double threshold variables autoregressive models
Abstract The reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm can generate a jump Markov chain in the parameter space of different dimensions, and select a suitable model effectively. In this paper, when the order of the double threshold variables autoregressive (DT-AR) is unknown, the RJMCMC method is designed to identify the order of the DT-AR model in this paper. The simulation experiments and the real example show that the proposed method works well in identifying the order and estimating the parameters of the DT-AR model simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信