Ziguo Zhu, Lingmin Dai, Guangxia Chen, Guanghui Yu, Xiu-jie Li, Zhen Han, Bo Li
{"title":"野生葡萄燕山葡萄VyCIPK1基因的异位表达。,赋予转基因烟草耐盐性","authors":"Ziguo Zhu, Lingmin Dai, Guangxia Chen, Guanghui Yu, Xiu-jie Li, Zhen Han, Bo Li","doi":"10.1080/17429145.2022.2115158","DOIUrl":null,"url":null,"abstract":"ABSTRACT Calmodulin-like interacting protein kinases play an important role in plant response to abiotic stresses and development. But the role of the CIPK gene in grapevine is unknown. In this study, VyCIPK1, isolated from the Chinese wild grape V. Yanshanesis, was strongly induced by salt stress. Overexpressing VyCIPK1 could induce AOC and AOS, and result in notably increased jamonate levels in tobacco. Under salt stress, transgenic plants showed higher germination rate, leaf number, and fresh weight than wild-type plants. Moreover, transgenic plants displayed higher chlorophyll content, catalase activity, peroxidase activity, superoxide dismutase activity, and lower malondialdehyde content, H2O2, and O2- content than that of wild type under salt stress conditions. And the stress-related genes, including ERD10C, ERD10D, LEA5, POD, SOD, and CAT, were up-regulated in transgenic plants. Our founding demonstrated that the VyCIPK1 has the potential for grape molecular breeding of salt tolerance as a candidate gene.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":"17 1","pages":"927 - 939"},"PeriodicalIF":2.6000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ectopic expression of VyCIPK1 gene, isolated from wild grape Vitis yanshanesis J, X. Chen., confers the tolerance to salt in transgenic tobacco\",\"authors\":\"Ziguo Zhu, Lingmin Dai, Guangxia Chen, Guanghui Yu, Xiu-jie Li, Zhen Han, Bo Li\",\"doi\":\"10.1080/17429145.2022.2115158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Calmodulin-like interacting protein kinases play an important role in plant response to abiotic stresses and development. But the role of the CIPK gene in grapevine is unknown. In this study, VyCIPK1, isolated from the Chinese wild grape V. Yanshanesis, was strongly induced by salt stress. Overexpressing VyCIPK1 could induce AOC and AOS, and result in notably increased jamonate levels in tobacco. Under salt stress, transgenic plants showed higher germination rate, leaf number, and fresh weight than wild-type plants. Moreover, transgenic plants displayed higher chlorophyll content, catalase activity, peroxidase activity, superoxide dismutase activity, and lower malondialdehyde content, H2O2, and O2- content than that of wild type under salt stress conditions. And the stress-related genes, including ERD10C, ERD10D, LEA5, POD, SOD, and CAT, were up-regulated in transgenic plants. Our founding demonstrated that the VyCIPK1 has the potential for grape molecular breeding of salt tolerance as a candidate gene.\",\"PeriodicalId\":16830,\"journal\":{\"name\":\"Journal of Plant Interactions\",\"volume\":\"17 1\",\"pages\":\"927 - 939\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17429145.2022.2115158\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2115158","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Ectopic expression of VyCIPK1 gene, isolated from wild grape Vitis yanshanesis J, X. Chen., confers the tolerance to salt in transgenic tobacco
ABSTRACT Calmodulin-like interacting protein kinases play an important role in plant response to abiotic stresses and development. But the role of the CIPK gene in grapevine is unknown. In this study, VyCIPK1, isolated from the Chinese wild grape V. Yanshanesis, was strongly induced by salt stress. Overexpressing VyCIPK1 could induce AOC and AOS, and result in notably increased jamonate levels in tobacco. Under salt stress, transgenic plants showed higher germination rate, leaf number, and fresh weight than wild-type plants. Moreover, transgenic plants displayed higher chlorophyll content, catalase activity, peroxidase activity, superoxide dismutase activity, and lower malondialdehyde content, H2O2, and O2- content than that of wild type under salt stress conditions. And the stress-related genes, including ERD10C, ERD10D, LEA5, POD, SOD, and CAT, were up-regulated in transgenic plants. Our founding demonstrated that the VyCIPK1 has the potential for grape molecular breeding of salt tolerance as a candidate gene.
期刊介绍:
Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.