{"title":"通道内隔板控制的三方圆柱对流换热及流体流动的数值研究","authors":"Y. Admi, M. Moussaoui, A. Mezrhab","doi":"10.14710/ijred.2022.43790","DOIUrl":null,"url":null,"abstract":"In this paper, a numerical investigation was performed to simulate laminar flow and heat transfer characteristics in a two-dimensional horizontal channel, comprising three heated square cylinders placed side-by-side and controlled by a downstream detached partition. The Double Multiple Relaxation Time Lattice Boltzmann Method (MRT-LBM) is applied as the numerical method was using the MRT-D2Q9 model and the MRT-D2Q5 model to treat the flow and the temperature fields respectively. The problem considered is a laminar and incompressible flow. The air (Pr = 0.71) is the fluid circulating in the channel, its physical properties, except the density, are assumed to be constant. The top and bottom channel walls are supposed to be adiabatic, the airflow incoming with cold temperature which is fixed to θc = - 0.5, each cylinder at a constant hot temperature equal to θh= 0,5. The flow is fully developed with a parabolic velocity profile at the inlet and at the outlet of the channel. Also, in the outlet, the temperature and velocity gradients are assumed to be zero. The effects of horizontal and vertical plate position and length on the fluid flow and the heat transfer are examined in terms of streamlines and isotherms contours visualizations. ","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical Investigation of Convective Heat Transfer and Fluid Flow Past a Three Square Cylinders Controlled by a Partition in Channel\",\"authors\":\"Y. Admi, M. Moussaoui, A. Mezrhab\",\"doi\":\"10.14710/ijred.2022.43790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a numerical investigation was performed to simulate laminar flow and heat transfer characteristics in a two-dimensional horizontal channel, comprising three heated square cylinders placed side-by-side and controlled by a downstream detached partition. The Double Multiple Relaxation Time Lattice Boltzmann Method (MRT-LBM) is applied as the numerical method was using the MRT-D2Q9 model and the MRT-D2Q5 model to treat the flow and the temperature fields respectively. The problem considered is a laminar and incompressible flow. The air (Pr = 0.71) is the fluid circulating in the channel, its physical properties, except the density, are assumed to be constant. The top and bottom channel walls are supposed to be adiabatic, the airflow incoming with cold temperature which is fixed to θc = - 0.5, each cylinder at a constant hot temperature equal to θh= 0,5. The flow is fully developed with a parabolic velocity profile at the inlet and at the outlet of the channel. Also, in the outlet, the temperature and velocity gradients are assumed to be zero. The effects of horizontal and vertical plate position and length on the fluid flow and the heat transfer are examined in terms of streamlines and isotherms contours visualizations. \",\"PeriodicalId\":44938,\"journal\":{\"name\":\"International Journal of Renewable Energy Development-IJRED\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Renewable Energy Development-IJRED\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/ijred.2022.43790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2022.43790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical Investigation of Convective Heat Transfer and Fluid Flow Past a Three Square Cylinders Controlled by a Partition in Channel
In this paper, a numerical investigation was performed to simulate laminar flow and heat transfer characteristics in a two-dimensional horizontal channel, comprising three heated square cylinders placed side-by-side and controlled by a downstream detached partition. The Double Multiple Relaxation Time Lattice Boltzmann Method (MRT-LBM) is applied as the numerical method was using the MRT-D2Q9 model and the MRT-D2Q5 model to treat the flow and the temperature fields respectively. The problem considered is a laminar and incompressible flow. The air (Pr = 0.71) is the fluid circulating in the channel, its physical properties, except the density, are assumed to be constant. The top and bottom channel walls are supposed to be adiabatic, the airflow incoming with cold temperature which is fixed to θc = - 0.5, each cylinder at a constant hot temperature equal to θh= 0,5. The flow is fully developed with a parabolic velocity profile at the inlet and at the outlet of the channel. Also, in the outlet, the temperature and velocity gradients are assumed to be zero. The effects of horizontal and vertical plate position and length on the fluid flow and the heat transfer are examined in terms of streamlines and isotherms contours visualizations.