素数环和半素数环上广义导数恒等式的左湮灭子

Q4 Mathematics
Md. Hamidur Rahaman
{"title":"素数环和半素数环上广义导数恒等式的左湮灭子","authors":"Md. Hamidur Rahaman","doi":"10.7151/dmgaa.1356","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a noncommutative prime ring of char (R) ≠ 2, F a generalized derivation of R associated to the derivation d of R and I a nonzero ideal of R. Let S ⊆ R. The left annihilator of S in R is denoted by lR(S) and defined by lR (S) = {x ∈ R | xS = 0}. In the present paper, we study the left annihilator of the sets {F (x)◦n F (y)−x◦n y | x, y ∈ I} and {F (x)◦n F (y)−d(x◦n y) | x, y ∈ I}.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"41 1","pages":"69 - 79"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left Annihilator of Identities with Generalized Derivations in Prime and Semiprime Rings\",\"authors\":\"Md. Hamidur Rahaman\",\"doi\":\"10.7151/dmgaa.1356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a noncommutative prime ring of char (R) ≠ 2, F a generalized derivation of R associated to the derivation d of R and I a nonzero ideal of R. Let S ⊆ R. The left annihilator of S in R is denoted by lR(S) and defined by lR (S) = {x ∈ R | xS = 0}. In the present paper, we study the left annihilator of the sets {F (x)◦n F (y)−x◦n y | x, y ∈ I} and {F (x)◦n F (y)−d(x◦n y) | x, y ∈ I}.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"41 1\",\"pages\":\"69 - 79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要设R是char(R)≠2的非对易质环,F是R的广义导子,与R的导子d相关,I是R的非零理想。设S⊆R。R中S的左零化子用lR(S)表示,并由lR(S)={x∈R|xS=0}定义。本文研究集合{F(x)的左零化子◦n F(y)−x◦ny|x,y∈I}和{F(x)◦n F(y)−d(x◦ny)|x,y∈I}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Left Annihilator of Identities with Generalized Derivations in Prime and Semiprime Rings
Abstract Let R be a noncommutative prime ring of char (R) ≠ 2, F a generalized derivation of R associated to the derivation d of R and I a nonzero ideal of R. Let S ⊆ R. The left annihilator of S in R is denoted by lR(S) and defined by lR (S) = {x ∈ R | xS = 0}. In the present paper, we study the left annihilator of the sets {F (x)◦n F (y)−x◦n y | x, y ∈ I} and {F (x)◦n F (y)−d(x◦n y) | x, y ∈ I}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信