金属硝基苯的光化学:现状和展望

Photochem Pub Date : 2022-05-31 DOI:10.3390/photochem2020027
P. M. Crespo, O. F. Odio, E. Reguera
{"title":"金属硝基苯的光化学:现状和展望","authors":"P. M. Crespo, O. F. Odio, E. Reguera","doi":"10.3390/photochem2020027","DOIUrl":null,"url":null,"abstract":"This contribution summarizes the current state in the photochemistry of metal nitroprussides, which is dominated by the electronic structure of the nitrosyl group. From the combination of p orbitals of the nitrogen and oxygen atoms in the NO+ ligand, a π*NO molecular orbital of relatively low energy is formed, which has π*2px and π*2py character. This is a double degenerate orbital. When the nitrosyl group is found coordinated to the iron atom in the nitroprusside ion, the availability of that low energy π*NO orbital results in light-induced electronic transitions from the iron atom dxy, dxz and dyz orbitals, 2b2 (xy) → 7e (π*NO) and 6e (xz,yz) → 7e (π*NO), which are observed at 498 and 394 nm, respectively. These light-induced transitions and the possibility of NO isomer formation dominate the photochemistry of metal nitroprussides. In this feature paper, we discuss the implications of such transitions in the stability of coordination compounds based on the nitroprusside ion in the presence of water molecules for both 3D and 2D structures, including the involved degradation mechanisms. These photo-induced electronic transitions modify the physical and functional properties of solids where the nitroprusside ion forms part of their structure and appear as an opportunity for tuning their magnetic, electrical, optical and as energy-applied materials, for instance. This contribution illustrates these opportunities with results from some recently reported studies, and possible research subjects, even some not explored, are mentioned.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photochemistry of Metal Nitroprussides: State-of-the-Art and Perspectives\",\"authors\":\"P. M. Crespo, O. F. Odio, E. Reguera\",\"doi\":\"10.3390/photochem2020027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution summarizes the current state in the photochemistry of metal nitroprussides, which is dominated by the electronic structure of the nitrosyl group. From the combination of p orbitals of the nitrogen and oxygen atoms in the NO+ ligand, a π*NO molecular orbital of relatively low energy is formed, which has π*2px and π*2py character. This is a double degenerate orbital. When the nitrosyl group is found coordinated to the iron atom in the nitroprusside ion, the availability of that low energy π*NO orbital results in light-induced electronic transitions from the iron atom dxy, dxz and dyz orbitals, 2b2 (xy) → 7e (π*NO) and 6e (xz,yz) → 7e (π*NO), which are observed at 498 and 394 nm, respectively. These light-induced transitions and the possibility of NO isomer formation dominate the photochemistry of metal nitroprussides. In this feature paper, we discuss the implications of such transitions in the stability of coordination compounds based on the nitroprusside ion in the presence of water molecules for both 3D and 2D structures, including the involved degradation mechanisms. These photo-induced electronic transitions modify the physical and functional properties of solids where the nitroprusside ion forms part of their structure and appear as an opportunity for tuning their magnetic, electrical, optical and as energy-applied materials, for instance. This contribution illustrates these opportunities with results from some recently reported studies, and possible research subjects, even some not explored, are mentioned.\",\"PeriodicalId\":74440,\"journal\":{\"name\":\"Photochem\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/photochem2020027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem2020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这一贡献总结了金属硝普钠光化学的现状,其主要由亚硝基的电子结构决定。由NO+配体中氮原子和氧原子的p轨道的组合,形成了能量相对较低的π*NO分子轨道,具有π*2px和π*2py性质。这是一个双退化轨道。当发现亚硝基与硝普钠离子中的铁原子配位时,低能π*NO轨道的可用性导致铁原子dxy、dxz和dyz轨道的光诱导电子跃迁,2b2(xy)→ 7e(π*NO)和6e(xz,yz)→ 7e(π*NO),分别在498和394nm处观察到。这些光诱导的跃迁和NO异构体形成的可能性主导了金属硝普钠的光化学。在这篇专题论文中,我们讨论了这种转变对基于硝普钠离子的配位化合物在水分子存在下的稳定性的影响,包括所涉及的降解机制。这些光诱导的电子跃迁改变了固体的物理和功能性质,硝普钠离子形成了固体结构的一部分,并成为调整其磁性、电学、光学和能量应用材料的机会。这一贡献通过最近报道的一些研究的结果说明了这些机会,并提到了可能的研究主题,甚至一些尚未探索的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photochemistry of Metal Nitroprussides: State-of-the-Art and Perspectives
This contribution summarizes the current state in the photochemistry of metal nitroprussides, which is dominated by the electronic structure of the nitrosyl group. From the combination of p orbitals of the nitrogen and oxygen atoms in the NO+ ligand, a π*NO molecular orbital of relatively low energy is formed, which has π*2px and π*2py character. This is a double degenerate orbital. When the nitrosyl group is found coordinated to the iron atom in the nitroprusside ion, the availability of that low energy π*NO orbital results in light-induced electronic transitions from the iron atom dxy, dxz and dyz orbitals, 2b2 (xy) → 7e (π*NO) and 6e (xz,yz) → 7e (π*NO), which are observed at 498 and 394 nm, respectively. These light-induced transitions and the possibility of NO isomer formation dominate the photochemistry of metal nitroprussides. In this feature paper, we discuss the implications of such transitions in the stability of coordination compounds based on the nitroprusside ion in the presence of water molecules for both 3D and 2D structures, including the involved degradation mechanisms. These photo-induced electronic transitions modify the physical and functional properties of solids where the nitroprusside ion forms part of their structure and appear as an opportunity for tuning their magnetic, electrical, optical and as energy-applied materials, for instance. This contribution illustrates these opportunities with results from some recently reported studies, and possible research subjects, even some not explored, are mentioned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信