{"title":"不同来源对塞伦加河三角洲冲积沉积物形成的贡献。(俄罗斯东西伯利亚)","authors":"Ellina D. Zaharova, V. Belyaev","doi":"10.24057/2071-9388-2022-098","DOIUrl":null,"url":null,"abstract":"Unraveling sources of sediment supply, their temporal and spatial variability is of key importance to determine origin of deposits and to explore the formation mechanism of Selenga Delta landscape units. From an environmental point of view this solution would help to identify the particle-bound pollution sources. We used geochemical fingerprinting (the FingerPro R package), which is a modern quantitative implementation of the method of sedimentary provenance analysis. The main aim was to recognize the main patterns of sediment and associated particle-bound pollutants transport and deposition within the delta. At the old floodplain from 55% to 90% of sediments were delivered from the eroded floodplain and terrace banks upstream and only about 10-15% originates from the remote basin sources. Sedimentary environment in the Khlystov Zaton reveals a greater variety than on the floodplains. 40% of sediments from the upper 5 cm-layer originated from the flood, taking place in 2013, and 30% were the product of floodplain and terraces banks erosion. Nevertheless, analysis of the fine-grained component of suspended sediment sets the material from eroded floodplain banks as the dominant source of accumulation within the delta. This means that the self-absorption is the leading process in the Selenga delta at the moment. Heavy metals and metalloids accumulates in the lower reaches of the Selenga on the floodplain surface, deltaic lakes and oxbows during high floods. Runoff decrease during floods can lead to the release of pollutants into the Lake Baikal.","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contribution Of The Different Sources To The Formation Of Alluvial Sediments In The Selenga River Delta. (Eastern Siberia, Russia)\",\"authors\":\"Ellina D. Zaharova, V. Belyaev\",\"doi\":\"10.24057/2071-9388-2022-098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unraveling sources of sediment supply, their temporal and spatial variability is of key importance to determine origin of deposits and to explore the formation mechanism of Selenga Delta landscape units. From an environmental point of view this solution would help to identify the particle-bound pollution sources. We used geochemical fingerprinting (the FingerPro R package), which is a modern quantitative implementation of the method of sedimentary provenance analysis. The main aim was to recognize the main patterns of sediment and associated particle-bound pollutants transport and deposition within the delta. At the old floodplain from 55% to 90% of sediments were delivered from the eroded floodplain and terrace banks upstream and only about 10-15% originates from the remote basin sources. Sedimentary environment in the Khlystov Zaton reveals a greater variety than on the floodplains. 40% of sediments from the upper 5 cm-layer originated from the flood, taking place in 2013, and 30% were the product of floodplain and terraces banks erosion. Nevertheless, analysis of the fine-grained component of suspended sediment sets the material from eroded floodplain banks as the dominant source of accumulation within the delta. This means that the self-absorption is the leading process in the Selenga delta at the moment. Heavy metals and metalloids accumulates in the lower reaches of the Selenga on the floodplain surface, deltaic lakes and oxbows during high floods. Runoff decrease during floods can lead to the release of pollutants into the Lake Baikal.\",\"PeriodicalId\":37517,\"journal\":{\"name\":\"Geography, Environment, Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography, Environment, Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24057/2071-9388-2022-098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2022-098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Contribution Of The Different Sources To The Formation Of Alluvial Sediments In The Selenga River Delta. (Eastern Siberia, Russia)
Unraveling sources of sediment supply, their temporal and spatial variability is of key importance to determine origin of deposits and to explore the formation mechanism of Selenga Delta landscape units. From an environmental point of view this solution would help to identify the particle-bound pollution sources. We used geochemical fingerprinting (the FingerPro R package), which is a modern quantitative implementation of the method of sedimentary provenance analysis. The main aim was to recognize the main patterns of sediment and associated particle-bound pollutants transport and deposition within the delta. At the old floodplain from 55% to 90% of sediments were delivered from the eroded floodplain and terrace banks upstream and only about 10-15% originates from the remote basin sources. Sedimentary environment in the Khlystov Zaton reveals a greater variety than on the floodplains. 40% of sediments from the upper 5 cm-layer originated from the flood, taking place in 2013, and 30% were the product of floodplain and terraces banks erosion. Nevertheless, analysis of the fine-grained component of suspended sediment sets the material from eroded floodplain banks as the dominant source of accumulation within the delta. This means that the self-absorption is the leading process in the Selenga delta at the moment. Heavy metals and metalloids accumulates in the lower reaches of the Selenga on the floodplain surface, deltaic lakes and oxbows during high floods. Runoff decrease during floods can lead to the release of pollutants into the Lake Baikal.
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.