{"title":"一类ifs族吸引子的连通性","authors":"F. Strobin, J. Swaczyna","doi":"10.4171/jfg/89","DOIUrl":null,"url":null,"abstract":"Let $X$ be a Banach space and $f,g:X\\rightarrow X$ be contractions. We investigate the set $$ C_{f,g}:=\\{w\\in X:\\m{ the attractor of IFS }\\F_w=\\{f,g+w\\}\\m{ is connected}\\}. $$ The motivation for our research comes from papers of Mihail and Miculescu, where it was shown that $C_{f,g}$ is a countable union of compact sets, provided $f,g$ are linear bounded operators with $\\pa f\\pa,\\pa g\\pa<1$ and such that $f$ is compact. Moreover, in the case when $X$ is finitely dimensional, such sets have been intensively investigated in the last years, especially when $f$ and $g$ are affine maps. As we will be mostly interested in infinite dimensional spaces, our results can be also viewed as a next step into extending of such studies into infinite dimensional setting. In particular, unlike in the finitely dimensional case, if $X$ has infinite dimension then $C_{f,g}$ is very small set (at least nowhere dense) provided $f,g$ satisfy some natural conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Connectedness of attractors of a certain family of IFSs\",\"authors\":\"F. Strobin, J. Swaczyna\",\"doi\":\"10.4171/jfg/89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a Banach space and $f,g:X\\\\rightarrow X$ be contractions. We investigate the set $$ C_{f,g}:=\\\\{w\\\\in X:\\\\m{ the attractor of IFS }\\\\F_w=\\\\{f,g+w\\\\}\\\\m{ is connected}\\\\}. $$ The motivation for our research comes from papers of Mihail and Miculescu, where it was shown that $C_{f,g}$ is a countable union of compact sets, provided $f,g$ are linear bounded operators with $\\\\pa f\\\\pa,\\\\pa g\\\\pa<1$ and such that $f$ is compact. Moreover, in the case when $X$ is finitely dimensional, such sets have been intensively investigated in the last years, especially when $f$ and $g$ are affine maps. As we will be mostly interested in infinite dimensional spaces, our results can be also viewed as a next step into extending of such studies into infinite dimensional setting. In particular, unlike in the finitely dimensional case, if $X$ has infinite dimension then $C_{f,g}$ is very small set (at least nowhere dense) provided $f,g$ satisfy some natural conditions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/89\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/89","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Connectedness of attractors of a certain family of IFSs
Let $X$ be a Banach space and $f,g:X\rightarrow X$ be contractions. We investigate the set $$ C_{f,g}:=\{w\in X:\m{ the attractor of IFS }\F_w=\{f,g+w\}\m{ is connected}\}. $$ The motivation for our research comes from papers of Mihail and Miculescu, where it was shown that $C_{f,g}$ is a countable union of compact sets, provided $f,g$ are linear bounded operators with $\pa f\pa,\pa g\pa<1$ and such that $f$ is compact. Moreover, in the case when $X$ is finitely dimensional, such sets have been intensively investigated in the last years, especially when $f$ and $g$ are affine maps. As we will be mostly interested in infinite dimensional spaces, our results can be also viewed as a next step into extending of such studies into infinite dimensional setting. In particular, unlike in the finitely dimensional case, if $X$ has infinite dimension then $C_{f,g}$ is very small set (at least nowhere dense) provided $f,g$ satisfy some natural conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.