基于相邻目标距离方差的网络流量入侵预测

Q1 Mathematics
K. G. Sharma, Yashpal Singh
{"title":"基于相邻目标距离方差的网络流量入侵预测","authors":"K. G. Sharma, Yashpal Singh","doi":"10.5815/ijcnis.2023.02.06","DOIUrl":null,"url":null,"abstract":"Activities in network traffic can be broadly classified into two categories: normal and malicious. Malicious activities are harmful and their detection is necessary for security reasons. The intrusion detection process monitors network traffic to identify malicious activities in the system. Any algorithm that divides objects into two categories, such as good or bad, is a binary class predictor or binary classifier. In this paper, we utilized the Nearest Neighbor Distance Variance (NNDV) classifier for the prediction of intrusion. NNDV is a binary class predictor and uses the concept of variance on the distance between objects. We used KDD CUP 99 dataset to evaluate the NNDV and compared the predictive accuracy of NNDV with that of the KNN or K Nearest Neighbor classifier. KNN is an efficient general purpose classifier, but we only considered its binary aspect. The results are quite satisfactory to show that NNDV is comparable to KNN. Many times, the performance of NNDV is better than KNN. We experimented with normalized and unnormalized data for NNDV and found that the accuracy results are generally better for normalized data. We also compared the accuracy results of different cross validation techniques such as 2 fold, 5 fold, 10 fold, and leave one out on the NNDV for the KDD CUP 99 dataset. Cross validation results can be helpful in determining the parameters of the algorithm.","PeriodicalId":36488,"journal":{"name":"International Journal of Computer Network and Information Security","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Intrusion in a Network Traffic Using Variance of Neighboring Object’s Distance\",\"authors\":\"K. G. Sharma, Yashpal Singh\",\"doi\":\"10.5815/ijcnis.2023.02.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activities in network traffic can be broadly classified into two categories: normal and malicious. Malicious activities are harmful and their detection is necessary for security reasons. The intrusion detection process monitors network traffic to identify malicious activities in the system. Any algorithm that divides objects into two categories, such as good or bad, is a binary class predictor or binary classifier. In this paper, we utilized the Nearest Neighbor Distance Variance (NNDV) classifier for the prediction of intrusion. NNDV is a binary class predictor and uses the concept of variance on the distance between objects. We used KDD CUP 99 dataset to evaluate the NNDV and compared the predictive accuracy of NNDV with that of the KNN or K Nearest Neighbor classifier. KNN is an efficient general purpose classifier, but we only considered its binary aspect. The results are quite satisfactory to show that NNDV is comparable to KNN. Many times, the performance of NNDV is better than KNN. We experimented with normalized and unnormalized data for NNDV and found that the accuracy results are generally better for normalized data. We also compared the accuracy results of different cross validation techniques such as 2 fold, 5 fold, 10 fold, and leave one out on the NNDV for the KDD CUP 99 dataset. Cross validation results can be helpful in determining the parameters of the algorithm.\",\"PeriodicalId\":36488,\"journal\":{\"name\":\"International Journal of Computer Network and Information Security\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Network and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijcnis.2023.02.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Network and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijcnis.2023.02.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

网络流量中的活动大致可以分为两类:正常活动和恶意活动。恶意活动是有害的,出于安全考虑,有必要对其进行检测。入侵检测过程监视网络流量,以识别系统中的恶意活动。任何将对象分为两类(如好或坏)的算法都是二进制类预测器或二进制分类器。在本文中,我们使用最近邻距离方差(NNDV)分类器来预测入侵。NNDV是一个二进制类预测器,它使用了对象之间距离的方差概念。我们使用KDD CUP 99数据集来评估NNDV,并将NNDV的预测精度与KNN或K近邻分类器的预测精度进行了比较。KNN是一种高效的通用分类器,但我们只考虑了它的二进制方面。结果表明,NNDV与KNN具有可比性。很多时候,NNDV的性能要好于KNN。我们对NNDV的归一化和非归一化数据进行了实验,发现归一化数据的精度结果通常更好。我们还比较了不同交叉验证技术的准确性结果,如KDD CUP 99数据集的NNDV上的2倍、5倍、10倍和遗漏一倍。交叉验证结果有助于确定算法的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Intrusion in a Network Traffic Using Variance of Neighboring Object’s Distance
Activities in network traffic can be broadly classified into two categories: normal and malicious. Malicious activities are harmful and their detection is necessary for security reasons. The intrusion detection process monitors network traffic to identify malicious activities in the system. Any algorithm that divides objects into two categories, such as good or bad, is a binary class predictor or binary classifier. In this paper, we utilized the Nearest Neighbor Distance Variance (NNDV) classifier for the prediction of intrusion. NNDV is a binary class predictor and uses the concept of variance on the distance between objects. We used KDD CUP 99 dataset to evaluate the NNDV and compared the predictive accuracy of NNDV with that of the KNN or K Nearest Neighbor classifier. KNN is an efficient general purpose classifier, but we only considered its binary aspect. The results are quite satisfactory to show that NNDV is comparable to KNN. Many times, the performance of NNDV is better than KNN. We experimented with normalized and unnormalized data for NNDV and found that the accuracy results are generally better for normalized data. We also compared the accuracy results of different cross validation techniques such as 2 fold, 5 fold, 10 fold, and leave one out on the NNDV for the KDD CUP 99 dataset. Cross validation results can be helpful in determining the parameters of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信