一种新的双样本广义ii型混合滤波方案

Q3 Business, Management and Accounting
O. Abo-Kasem, A. Elshahhat
{"title":"一种新的双样本广义ii型混合滤波方案","authors":"O. Abo-Kasem, A. Elshahhat","doi":"10.1080/01966324.2021.1946666","DOIUrl":null,"url":null,"abstract":"Abstract Generalized hybrid censoring schemes, proposed by Chandrasekar et al. (Naval Research Logistics, 51(7), 994–1004, 2004), have several advantages over the conventional hybrid censoring schemes. In this paper, we introduce a new generalized Type-II hybrid censoring scheme for two samples. The maximum likelihood and Bayesian inferential approaches for estimating the unknown mean lifetimes of the experimental units for the two samples follow exponential population with different scale parameters are considered. The corresponding asymptotic confidence intervals of the maximum likelihood estimators are also obtained. Using gamma conjugate priors, the Bayes estimators are developed relative to both symmetric and asymmetric loss functions. Also, some popular censoring plans are generalized and can be obtained as a special cases from our results. One real-life data set is analyzed to discuss how the applicability of the proposed methods in real phenomenon. Finally, to examine the performance of proposed methods, a Monte Carlo simulation study is carried out.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"170 - 184"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1946666","citationCount":"1","resultStr":"{\"title\":\"A New Two Sample Generalized Type-II Hybrid Censoring Scheme\",\"authors\":\"O. Abo-Kasem, A. Elshahhat\",\"doi\":\"10.1080/01966324.2021.1946666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Generalized hybrid censoring schemes, proposed by Chandrasekar et al. (Naval Research Logistics, 51(7), 994–1004, 2004), have several advantages over the conventional hybrid censoring schemes. In this paper, we introduce a new generalized Type-II hybrid censoring scheme for two samples. The maximum likelihood and Bayesian inferential approaches for estimating the unknown mean lifetimes of the experimental units for the two samples follow exponential population with different scale parameters are considered. The corresponding asymptotic confidence intervals of the maximum likelihood estimators are also obtained. Using gamma conjugate priors, the Bayes estimators are developed relative to both symmetric and asymmetric loss functions. Also, some popular censoring plans are generalized and can be obtained as a special cases from our results. One real-life data set is analyzed to discuss how the applicability of the proposed methods in real phenomenon. Finally, to examine the performance of proposed methods, a Monte Carlo simulation study is carried out.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"41 1\",\"pages\":\"170 - 184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1946666\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1946666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1946666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1

摘要

摘要Chandrasekar等人提出的广义混合审查方案(Naval Research Logistics,51(7),994–10042004)与传统的混合审查方案相比具有几个优点。在本文中,我们介绍了一种新的两个样本的广义II型混合截尾方案。考虑了估计两个样本的实验单元未知平均寿命的最大似然和贝叶斯推理方法,这些方法遵循不同尺度参数的指数总体。给出了最大似然估计量的渐近置信区间。使用伽马共轭先验,相对于对称和非对称损失函数开发了贝叶斯估计量。此外,我们还推广了一些流行的审查方案,并将其作为特例从我们的结果中得到。分析了一个真实的数据集,讨论了所提出的方法在真实现象中的适用性。最后,为了检验所提出的方法的性能,进行了蒙特卡罗模拟研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Two Sample Generalized Type-II Hybrid Censoring Scheme
Abstract Generalized hybrid censoring schemes, proposed by Chandrasekar et al. (Naval Research Logistics, 51(7), 994–1004, 2004), have several advantages over the conventional hybrid censoring schemes. In this paper, we introduce a new generalized Type-II hybrid censoring scheme for two samples. The maximum likelihood and Bayesian inferential approaches for estimating the unknown mean lifetimes of the experimental units for the two samples follow exponential population with different scale parameters are considered. The corresponding asymptotic confidence intervals of the maximum likelihood estimators are also obtained. Using gamma conjugate priors, the Bayes estimators are developed relative to both symmetric and asymmetric loss functions. Also, some popular censoring plans are generalized and can be obtained as a special cases from our results. One real-life data set is analyzed to discuss how the applicability of the proposed methods in real phenomenon. Finally, to examine the performance of proposed methods, a Monte Carlo simulation study is carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信