{"title":"教育大规模评估中背景问卷缺失数据的处理:不同程序的评价","authors":"S. Grund, O. Lüdtke, A. Robitzsch","doi":"10.3102/1076998620959058","DOIUrl":null,"url":null,"abstract":"Large-scale assessments (LSAs) use Mislevy’s “plausible value” (PV) approach to relate student proficiency to noncognitive variables administered in a background questionnaire. This method requires background variables to be completely observed, a requirement that is seldom fulfilled. In this article, we evaluate and compare the properties of methods used in current practice for dealing with missing data in background variables in educational LSAs, which rely on the missing indicator method (MIM), with other methods based on multiple imputation. In this context, we present a fully conditional specification (FCS) approach that allows for a joint treatment of PVs and missing data. Using theoretical arguments and two simulation studies, we illustrate under what conditions the MIM provides biased or unbiased estimates of population parameters and provide evidence that methods such as FCS can provide an effective alternative to the MIM. We discuss the strengths and weaknesses of the approaches and outline potential consequences for operational practice in educational LSAs. An illustration is provided using data from the PISA 2015 study.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"46 1","pages":"430 - 465"},"PeriodicalIF":1.9000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On the Treatment of Missing Data in Background Questionnaires in Educational Large-Scale Assessments: An Evaluation of Different Procedures\",\"authors\":\"S. Grund, O. Lüdtke, A. Robitzsch\",\"doi\":\"10.3102/1076998620959058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale assessments (LSAs) use Mislevy’s “plausible value” (PV) approach to relate student proficiency to noncognitive variables administered in a background questionnaire. This method requires background variables to be completely observed, a requirement that is seldom fulfilled. In this article, we evaluate and compare the properties of methods used in current practice for dealing with missing data in background variables in educational LSAs, which rely on the missing indicator method (MIM), with other methods based on multiple imputation. In this context, we present a fully conditional specification (FCS) approach that allows for a joint treatment of PVs and missing data. Using theoretical arguments and two simulation studies, we illustrate under what conditions the MIM provides biased or unbiased estimates of population parameters and provide evidence that methods such as FCS can provide an effective alternative to the MIM. We discuss the strengths and weaknesses of the approaches and outline potential consequences for operational practice in educational LSAs. An illustration is provided using data from the PISA 2015 study.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"46 1\",\"pages\":\"430 - 465\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/1076998620959058\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/1076998620959058","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
On the Treatment of Missing Data in Background Questionnaires in Educational Large-Scale Assessments: An Evaluation of Different Procedures
Large-scale assessments (LSAs) use Mislevy’s “plausible value” (PV) approach to relate student proficiency to noncognitive variables administered in a background questionnaire. This method requires background variables to be completely observed, a requirement that is seldom fulfilled. In this article, we evaluate and compare the properties of methods used in current practice for dealing with missing data in background variables in educational LSAs, which rely on the missing indicator method (MIM), with other methods based on multiple imputation. In this context, we present a fully conditional specification (FCS) approach that allows for a joint treatment of PVs and missing data. Using theoretical arguments and two simulation studies, we illustrate under what conditions the MIM provides biased or unbiased estimates of population parameters and provide evidence that methods such as FCS can provide an effective alternative to the MIM. We discuss the strengths and weaknesses of the approaches and outline potential consequences for operational practice in educational LSAs. An illustration is provided using data from the PISA 2015 study.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.