关于最高权范畴中的极小倾斜复形

Pub Date : 2022-12-22 DOI:10.1007/s10468-022-10188-5
Jonathan Gruber
{"title":"关于最高权范畴中的极小倾斜复形","authors":"Jonathan Gruber","doi":"10.1007/s10468-022-10188-5","DOIUrl":null,"url":null,"abstract":"<div><p>We explain the construction of <i>minimal tilting complexes</i> for objects of highest weight categories and we study in detail the minimal tilting complexes for standard objects and simple objects. For certain categories of representations of complex simple Lie algebras, affine Kac-Moody algebras and quantum groups at roots of unity, we relate the multiplicities of indecomposable tilting objects appearing in the terms of these complexes to the coefficients of Kazhdan-Lusztig polynomials.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Minimal Tilting Complexes in Highest Weight Categories\",\"authors\":\"Jonathan Gruber\",\"doi\":\"10.1007/s10468-022-10188-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explain the construction of <i>minimal tilting complexes</i> for objects of highest weight categories and we study in detail the minimal tilting complexes for standard objects and simple objects. For certain categories of representations of complex simple Lie algebras, affine Kac-Moody algebras and quantum groups at roots of unity, we relate the multiplicities of indecomposable tilting objects appearing in the terms of these complexes to the coefficients of Kazhdan-Lusztig polynomials.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-022-10188-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10188-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们解释了最高权重类别对象的最小倾斜复数的构造,并详细研究了标准对象和简单对象的最小倾斜复数。对于复简单李代数、仿射 Kac-Moody 代数和单根量子群的某些表示范畴,我们将这些复数项中出现的不可分解倾斜对象的乘数与卡兹丹-卢兹蒂格多项式的系数联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Minimal Tilting Complexes in Highest Weight Categories

We explain the construction of minimal tilting complexes for objects of highest weight categories and we study in detail the minimal tilting complexes for standard objects and simple objects. For certain categories of representations of complex simple Lie algebras, affine Kac-Moody algebras and quantum groups at roots of unity, we relate the multiplicities of indecomposable tilting objects appearing in the terms of these complexes to the coefficients of Kazhdan-Lusztig polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信