具有弱、强阻尼项和对数非线性的$p$- laplace双曲型方程解的全局适定性

IF 0.6 4区 数学 Q3 MATHEMATICS
N. Boumaza, Billel Gheraibia, Gongwei Liu
{"title":"具有弱、强阻尼项和对数非线性的$p$- laplace双曲型方程解的全局适定性","authors":"N. Boumaza, Billel Gheraibia, Gongwei Liu","doi":"10.11650/tjm/220702","DOIUrl":null,"url":null,"abstract":". In this paper, we consider the p -Laplacian hyperbolic type equation with weak and strong damping terms and logarithmic nonlinearity. By using the potential well method and a logarithmic Sobolev inequality, we prove global existence, infinite time blow up and asymptotic behavior of solutions in two cases E (0) < d and E (0) = d . Furthermore, the infinite time blow up of solutions for the problem with E (0) > 0 ( ω = 0) is studied.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Global Well-posedness of Solutions for the $p$-Laplacian Hyperbolic Type Equation with Weak and Strong Damping Terms and Logarithmic Nonlinearity\",\"authors\":\"N. Boumaza, Billel Gheraibia, Gongwei Liu\",\"doi\":\"10.11650/tjm/220702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we consider the p -Laplacian hyperbolic type equation with weak and strong damping terms and logarithmic nonlinearity. By using the potential well method and a logarithmic Sobolev inequality, we prove global existence, infinite time blow up and asymptotic behavior of solutions in two cases E (0) < d and E (0) = d . Furthermore, the infinite time blow up of solutions for the problem with E (0) > 0 ( ω = 0) is studied.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220702\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220702","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了具有弱阻尼项和强阻尼项以及对数非线性的p-拉普拉斯双曲型方程。利用势阱方法和对数Sobolev不等式,我们证明了在两种情况E(0)0(ω=0)问题解的有限时间爆破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Well-posedness of Solutions for the $p$-Laplacian Hyperbolic Type Equation with Weak and Strong Damping Terms and Logarithmic Nonlinearity
. In this paper, we consider the p -Laplacian hyperbolic type equation with weak and strong damping terms and logarithmic nonlinearity. By using the potential well method and a logarithmic Sobolev inequality, we prove global existence, infinite time blow up and asymptotic behavior of solutions in two cases E (0) < d and E (0) = d . Furthermore, the infinite time blow up of solutions for the problem with E (0) > 0 ( ω = 0) is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信