{"title":"通过诱导两种转录因子的表达将人诱导多能干细胞快速转化为多巴胺能神经元。","authors":"Kaneyasu Nishimura, T. Nitta, K. Doi, K. Takata","doi":"10.1089/scd.2021.0363","DOIUrl":null,"url":null,"abstract":"Human pluripotent stem cells (hPSCs) including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs) provide promising sources for regenerative therapy, disease modeling, and drug screening. Relevant efforts have been invested in establishing robust induction protocols for PSC-derived dopaminergic (DA) neuron generation by mimicking brain development-related signaling pathways. However, these protocols require fully trained techniques and a long time to yield mature DA neurons. In this study, to accelerate the entire process, we generated a hiPSC line differentiating into DA neurons by the inducible force expression of two transcription factors ASCL1 and LMX1A. Using this hiPSC line, we established a rapid and simple induction protocol to generate mature DA neurons in 28 days. The induced DA neurons were characterized by gene expression and immunohistochemical analyses of fundamental DA neuronal markers. Moreover, the cell functional properties were analyzed by a multielectrode array system on day 28. This resource offers future applications for high-throughput screening, such as drug development and toxicology that require highly validated DA neurons.","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rapid conversion of human induced pluripotent stem cells into dopaminergic neurons by inducible expression of two transcription factors.\",\"authors\":\"Kaneyasu Nishimura, T. Nitta, K. Doi, K. Takata\",\"doi\":\"10.1089/scd.2021.0363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pluripotent stem cells (hPSCs) including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs) provide promising sources for regenerative therapy, disease modeling, and drug screening. Relevant efforts have been invested in establishing robust induction protocols for PSC-derived dopaminergic (DA) neuron generation by mimicking brain development-related signaling pathways. However, these protocols require fully trained techniques and a long time to yield mature DA neurons. In this study, to accelerate the entire process, we generated a hiPSC line differentiating into DA neurons by the inducible force expression of two transcription factors ASCL1 and LMX1A. Using this hiPSC line, we established a rapid and simple induction protocol to generate mature DA neurons in 28 days. The induced DA neurons were characterized by gene expression and immunohistochemical analyses of fundamental DA neuronal markers. Moreover, the cell functional properties were analyzed by a multielectrode array system on day 28. This resource offers future applications for high-throughput screening, such as drug development and toxicology that require highly validated DA neurons.\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2021.0363\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2021.0363","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Rapid conversion of human induced pluripotent stem cells into dopaminergic neurons by inducible expression of two transcription factors.
Human pluripotent stem cells (hPSCs) including human embryonic stem cells and human induced pluripotent stem cells (hiPSCs) provide promising sources for regenerative therapy, disease modeling, and drug screening. Relevant efforts have been invested in establishing robust induction protocols for PSC-derived dopaminergic (DA) neuron generation by mimicking brain development-related signaling pathways. However, these protocols require fully trained techniques and a long time to yield mature DA neurons. In this study, to accelerate the entire process, we generated a hiPSC line differentiating into DA neurons by the inducible force expression of two transcription factors ASCL1 and LMX1A. Using this hiPSC line, we established a rapid and simple induction protocol to generate mature DA neurons in 28 days. The induced DA neurons were characterized by gene expression and immunohistochemical analyses of fundamental DA neuronal markers. Moreover, the cell functional properties were analyzed by a multielectrode array system on day 28. This resource offers future applications for high-throughput screening, such as drug development and toxicology that require highly validated DA neurons.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development