齐次自仿射测度的傅立叶衰减

IF 1.1 4区 数学 Q1 MATHEMATICS
B. Solomyak
{"title":"齐次自仿射测度的傅立叶衰减","authors":"B. Solomyak","doi":"10.4171/jfg/119","DOIUrl":null,"url":null,"abstract":"lim p μpξq “ 0, as |ξ| Ñ 8, where |ξ| is a norm (say, the Euclidean norm) of ξ P Rd. Whereas absolutely continuous measures are Rajchman by the Riemann-Lebesgue Lemma, it is a subtle question to decide which singular measures are such, see, e.g., the survey of Lyons [14]. A much stronger property, useful for many applications is the following. Definition 1.1. For α ą 0 let Ddpαq “ ν finite positive measure on Rd : |p νptq| “ Oνp|t|q, |t| Ñ 8 (","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fourier decay for homogeneous self-affine measures\",\"authors\":\"B. Solomyak\",\"doi\":\"10.4171/jfg/119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"lim p μpξq “ 0, as |ξ| Ñ 8, where |ξ| is a norm (say, the Euclidean norm) of ξ P Rd. Whereas absolutely continuous measures are Rajchman by the Riemann-Lebesgue Lemma, it is a subtle question to decide which singular measures are such, see, e.g., the survey of Lyons [14]. A much stronger property, useful for many applications is the following. Definition 1.1. For α ą 0 let Ddpαq “ ν finite positive measure on Rd : |p νptq| “ Oνp|t|q, |t| Ñ 8 (\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/119\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/119","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

lim pμpξq“0,如|ξ|ñ8,其中|ξ|r是ξp Rd的范数(比如欧几里得范数)。虽然绝对连续测度是Riemann-Lebesgue引理的Rajchman,但决定哪些奇异测度是这样的是一个微妙的问题,例如参见Lyons的调查[14]。一个更强的性质,对许多应用都有用,如下定义1.1。设Ddpαq“ΓRd上的有限正测度:|pΓptq|”OΓp|t|q,|t|ñ8(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier decay for homogeneous self-affine measures
lim p μpξq “ 0, as |ξ| Ñ 8, where |ξ| is a norm (say, the Euclidean norm) of ξ P Rd. Whereas absolutely continuous measures are Rajchman by the Riemann-Lebesgue Lemma, it is a subtle question to decide which singular measures are such, see, e.g., the survey of Lyons [14]. A much stronger property, useful for many applications is the following. Definition 1.1. For α ą 0 let Ddpαq “ ν finite positive measure on Rd : |p νptq| “ Oνp|t|q, |t| Ñ 8 (
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信