黎曼流形上Schrödinger方程的多解及其$$\nabla$$Ş-定理

IF 0.6 3区 数学 Q3 MATHEMATICS
Luigi Appolloni, Giovanni Molica Bisci, Simone Secchi
{"title":"黎曼流形上Schrödinger方程的多解及其$$\\nabla$$Ş-定理","authors":"Luigi Appolloni,&nbsp;Giovanni Molica Bisci,&nbsp;Simone Secchi","doi":"10.1007/s10455-023-09885-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a smooth, complete and non-compact Riemannian manifold <span>\\((\\mathcal {M},g)\\)</span> of dimension <span>\\(d \\ge 3\\)</span>, and we look for solutions to the semilinear elliptic equation </p><div><div><span>$$\\begin{aligned} -\\varDelta _g w + V(\\sigma ) w = \\alpha (\\sigma ) f(w) + \\lambda w \\quad \\hbox {in }\\mathcal {M}. \\end{aligned}$$</span></div></div><p>The potential <span>\\(V :\\mathcal {M} \\rightarrow \\mathbb {R}\\)</span> is a continuous function which is coercive in a suitable sense, while the nonlinearity <i>f</i> has a subcritical growth in the sense of Sobolev embeddings. By means of <span>\\(\\nabla \\)</span>-theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter <span>\\(\\lambda \\)</span> is sufficiently close to an eigenvalue of the operator <span>\\(-\\varDelta _g\\)</span>.\n</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"63 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for Schrödinger equations on Riemannian manifolds via \\\\(\\\\nabla \\\\)-theorems\",\"authors\":\"Luigi Appolloni,&nbsp;Giovanni Molica Bisci,&nbsp;Simone Secchi\",\"doi\":\"10.1007/s10455-023-09885-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a smooth, complete and non-compact Riemannian manifold <span>\\\\((\\\\mathcal {M},g)\\\\)</span> of dimension <span>\\\\(d \\\\ge 3\\\\)</span>, and we look for solutions to the semilinear elliptic equation </p><div><div><span>$$\\\\begin{aligned} -\\\\varDelta _g w + V(\\\\sigma ) w = \\\\alpha (\\\\sigma ) f(w) + \\\\lambda w \\\\quad \\\\hbox {in }\\\\mathcal {M}. \\\\end{aligned}$$</span></div></div><p>The potential <span>\\\\(V :\\\\mathcal {M} \\\\rightarrow \\\\mathbb {R}\\\\)</span> is a continuous function which is coercive in a suitable sense, while the nonlinearity <i>f</i> has a subcritical growth in the sense of Sobolev embeddings. By means of <span>\\\\(\\\\nabla \\\\)</span>-theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter <span>\\\\(\\\\lambda \\\\)</span> is sufficiently close to an eigenvalue of the operator <span>\\\\(-\\\\varDelta _g\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09885-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09885-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个维为(d\ge3\)的光滑、完备和非紧黎曼流形\(\mathcal{M},g)\,并寻找一个半线性椭圆方程$\beart{aligned}-\varDelta_g w+V(\ sigma)w=\alpha(\ sigma)f(w)+\lambda w\quad\hbox{in}\mathcal{M}。\end{aligned}$$势\(V:\mathcal{M}\rightarrow\mathbb{R}\)是一个连续函数,在适当意义上是矫顽的,而非线性f在Sobolev嵌入意义上具有亚临界增长。利用Marino和Saccon引入的\(\nabla\)-定理,我们证明了只要参数\(\lambda\)足够接近算子\(-\varDelta_g\)的特征值,就存在至少三个非平凡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions for Schrödinger equations on Riemannian manifolds via \(\nabla \)-theorems

We consider a smooth, complete and non-compact Riemannian manifold \((\mathcal {M},g)\) of dimension \(d \ge 3\), and we look for solutions to the semilinear elliptic equation

$$\begin{aligned} -\varDelta _g w + V(\sigma ) w = \alpha (\sigma ) f(w) + \lambda w \quad \hbox {in }\mathcal {M}. \end{aligned}$$

The potential \(V :\mathcal {M} \rightarrow \mathbb {R}\) is a continuous function which is coercive in a suitable sense, while the nonlinearity f has a subcritical growth in the sense of Sobolev embeddings. By means of \(\nabla \)-theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter \(\lambda \) is sufficiently close to an eigenvalue of the operator \(-\varDelta _g\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信