黎曼流形上Schrödinger方程的多解及其$$\nabla$$Ş-定理

Pub Date : 2023-01-24 DOI:10.1007/s10455-023-09885-1
Luigi Appolloni, Giovanni Molica Bisci, Simone Secchi
{"title":"黎曼流形上Schrödinger方程的多解及其$$\\nabla$$Ş-定理","authors":"Luigi Appolloni,&nbsp;Giovanni Molica Bisci,&nbsp;Simone Secchi","doi":"10.1007/s10455-023-09885-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a smooth, complete and non-compact Riemannian manifold <span>\\((\\mathcal {M},g)\\)</span> of dimension <span>\\(d \\ge 3\\)</span>, and we look for solutions to the semilinear elliptic equation </p><div><div><span>$$\\begin{aligned} -\\varDelta _g w + V(\\sigma ) w = \\alpha (\\sigma ) f(w) + \\lambda w \\quad \\hbox {in }\\mathcal {M}. \\end{aligned}$$</span></div></div><p>The potential <span>\\(V :\\mathcal {M} \\rightarrow \\mathbb {R}\\)</span> is a continuous function which is coercive in a suitable sense, while the nonlinearity <i>f</i> has a subcritical growth in the sense of Sobolev embeddings. By means of <span>\\(\\nabla \\)</span>-theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter <span>\\(\\lambda \\)</span> is sufficiently close to an eigenvalue of the operator <span>\\(-\\varDelta _g\\)</span>.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for Schrödinger equations on Riemannian manifolds via \\\\(\\\\nabla \\\\)-theorems\",\"authors\":\"Luigi Appolloni,&nbsp;Giovanni Molica Bisci,&nbsp;Simone Secchi\",\"doi\":\"10.1007/s10455-023-09885-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a smooth, complete and non-compact Riemannian manifold <span>\\\\((\\\\mathcal {M},g)\\\\)</span> of dimension <span>\\\\(d \\\\ge 3\\\\)</span>, and we look for solutions to the semilinear elliptic equation </p><div><div><span>$$\\\\begin{aligned} -\\\\varDelta _g w + V(\\\\sigma ) w = \\\\alpha (\\\\sigma ) f(w) + \\\\lambda w \\\\quad \\\\hbox {in }\\\\mathcal {M}. \\\\end{aligned}$$</span></div></div><p>The potential <span>\\\\(V :\\\\mathcal {M} \\\\rightarrow \\\\mathbb {R}\\\\)</span> is a continuous function which is coercive in a suitable sense, while the nonlinearity <i>f</i> has a subcritical growth in the sense of Sobolev embeddings. By means of <span>\\\\(\\\\nabla \\\\)</span>-theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter <span>\\\\(\\\\lambda \\\\)</span> is sufficiently close to an eigenvalue of the operator <span>\\\\(-\\\\varDelta _g\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09885-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09885-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个维为(d\ge3\)的光滑、完备和非紧黎曼流形\(\mathcal{M},g)\,并寻找一个半线性椭圆方程$\beart{aligned}-\varDelta_g w+V(\ sigma)w=\alpha(\ sigma)f(w)+\lambda w\quad\hbox{in}\mathcal{M}。\end{aligned}$$势\(V:\mathcal{M}\rightarrow\mathbb{R}\)是一个连续函数,在适当意义上是矫顽的,而非线性f在Sobolev嵌入意义上具有亚临界增长。利用Marino和Saccon引入的\(\nabla\)-定理,我们证明了只要参数\(\lambda\)足够接近算子\(-\varDelta_g\)的特征值,就存在至少三个非平凡解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiple solutions for Schrödinger equations on Riemannian manifolds via \(\nabla \)-theorems

We consider a smooth, complete and non-compact Riemannian manifold \((\mathcal {M},g)\) of dimension \(d \ge 3\), and we look for solutions to the semilinear elliptic equation

$$\begin{aligned} -\varDelta _g w + V(\sigma ) w = \alpha (\sigma ) f(w) + \lambda w \quad \hbox {in }\mathcal {M}. \end{aligned}$$

The potential \(V :\mathcal {M} \rightarrow \mathbb {R}\) is a continuous function which is coercive in a suitable sense, while the nonlinearity f has a subcritical growth in the sense of Sobolev embeddings. By means of \(\nabla \)-theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter \(\lambda \) is sufficiently close to an eigenvalue of the operator \(-\varDelta _g\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信