包括左心室应变分析的机器学习模型用于预测肥厚型心肌病的心源性猝死

IF 18 Q4 Medicine
A. Al Wazzan , M. Taconne , V. Le Rolle , M. Inngjerdingen Forsaa , K. Hermann Haugaa , E. Galli , A. Hernandez , T. Edvarsen , E. Donal
{"title":"包括左心室应变分析的机器学习模型用于预测肥厚型心肌病的心源性猝死","authors":"A. Al Wazzan ,&nbsp;M. Taconne ,&nbsp;V. Le Rolle ,&nbsp;M. Inngjerdingen Forsaa ,&nbsp;K. Hermann Haugaa ,&nbsp;E. Galli ,&nbsp;A. Hernandez ,&nbsp;T. Edvarsen ,&nbsp;E. Donal","doi":"10.1016/j.acvdsp.2023.04.026","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p><span><span>The excess mortality in HCM patients is mainly attributed to the occurrence of </span>SCD<span>. The prediction of ventricular arrhythmias remains challenging and could be improved. This study evaluated the added predictive value of a machine learning-based model combining clinical and conventional imaging parameters with information from left ventricular strain analysis to predict sudden cardiac death (SCD) </span></span>in patients with hypertrophic cardiomyopathy (HCM).</p></div><div><h3>Method</h3><p><span>A total of 434 HCM patients (65% men, mean age 56 years) were retrospectively included from two referral centers (Oslo University Hospital, Rennes University Hospital) and followed longitudinally (mean duration 6 years). Mechanical and temporal parameters were automatically extracted from the left ventricle<span><span> longitudinal strain (LV-LS) segmental curves of each patient and included in a Ridge Regression model alongside conventional clinical and imaging data. The composite endpoint included sustained ventricular tachycardia, appropriate </span>implantable cardioverter defibrillator therapy, aborted cardiac arrest, or sudden cardiac death (</span></span><span>Fig. 1</span>).</p></div><div><h3>Results</h3><p>Thirty-four patients (7.8%) met the endpoint with an incidence of ventricular arrhythmias of 0.9%/years. From a subset of 18 most discriminating parameters, including 7 derived from LV-LS, and after <em>n</em> <!-->=<!--> <!-->200 rounds of cross-validation, the final model showed superior predictive performance compared to conventional models with a mean area under the curve (AUC) of 0.83<!--> <!-->±<!--> <!-->0.8.</p></div><div><h3>Conclusion</h3><p><span>A machine learning model including automatically extracted left ventricular strain-derived parameters was superior in the prediction of sustained ventricular arrhythmias and SCD in patients with HCM compared to existing models. Machine learning model including LV-LS analysis could improve SCD risk stratification in HCM patients (</span><span>Fig. 1</span>).</p></div>","PeriodicalId":8140,"journal":{"name":"Archives of Cardiovascular Diseases Supplements","volume":"15 3","pages":"Page 257"},"PeriodicalIF":18.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning model including left ventricular strain analysis for sudden cardiac death prediction in hypertrophic cardiomyopathy\",\"authors\":\"A. Al Wazzan ,&nbsp;M. Taconne ,&nbsp;V. Le Rolle ,&nbsp;M. Inngjerdingen Forsaa ,&nbsp;K. Hermann Haugaa ,&nbsp;E. Galli ,&nbsp;A. Hernandez ,&nbsp;T. Edvarsen ,&nbsp;E. Donal\",\"doi\":\"10.1016/j.acvdsp.2023.04.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p><span><span>The excess mortality in HCM patients is mainly attributed to the occurrence of </span>SCD<span>. The prediction of ventricular arrhythmias remains challenging and could be improved. This study evaluated the added predictive value of a machine learning-based model combining clinical and conventional imaging parameters with information from left ventricular strain analysis to predict sudden cardiac death (SCD) </span></span>in patients with hypertrophic cardiomyopathy (HCM).</p></div><div><h3>Method</h3><p><span>A total of 434 HCM patients (65% men, mean age 56 years) were retrospectively included from two referral centers (Oslo University Hospital, Rennes University Hospital) and followed longitudinally (mean duration 6 years). Mechanical and temporal parameters were automatically extracted from the left ventricle<span><span> longitudinal strain (LV-LS) segmental curves of each patient and included in a Ridge Regression model alongside conventional clinical and imaging data. The composite endpoint included sustained ventricular tachycardia, appropriate </span>implantable cardioverter defibrillator therapy, aborted cardiac arrest, or sudden cardiac death (</span></span><span>Fig. 1</span>).</p></div><div><h3>Results</h3><p>Thirty-four patients (7.8%) met the endpoint with an incidence of ventricular arrhythmias of 0.9%/years. From a subset of 18 most discriminating parameters, including 7 derived from LV-LS, and after <em>n</em> <!-->=<!--> <!-->200 rounds of cross-validation, the final model showed superior predictive performance compared to conventional models with a mean area under the curve (AUC) of 0.83<!--> <!-->±<!--> <!-->0.8.</p></div><div><h3>Conclusion</h3><p><span>A machine learning model including automatically extracted left ventricular strain-derived parameters was superior in the prediction of sustained ventricular arrhythmias and SCD in patients with HCM compared to existing models. Machine learning model including LV-LS analysis could improve SCD risk stratification in HCM patients (</span><span>Fig. 1</span>).</p></div>\",\"PeriodicalId\":8140,\"journal\":{\"name\":\"Archives of Cardiovascular Diseases Supplements\",\"volume\":\"15 3\",\"pages\":\"Page 257\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Cardiovascular Diseases Supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878648023001659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Cardiovascular Diseases Supplements","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878648023001659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

HCM患者的高死亡率主要归因于SCD的发生。室性心律失常的预测仍然具有挑战性,可以改进。本研究评估了一种基于机器学习的模型的附加预测价值,该模型将临床和常规成像参数与左心室应变分析信息相结合,用于预测肥厚性心肌病(HCM)患者的心源性猝死(SCD)。方法回顾性分析来自两个转诊中心(奥斯陆大学医院、雷恩大学医院)的434例HCM患者(65%为男性,平均年龄56岁),并进行纵向随访(平均随访时间6年)。从每位患者的左心室纵向应变(LV-LS)分段曲线中自动提取力学和时间参数,并将其与常规临床和影像学数据一起纳入Ridge回归模型。复合终点包括持续性室性心动过速、适当的植入式心律转复除颤器治疗、心脏骤停流产或心源性猝死(图1)。结果34例(7.8%)患者达到终点,室性心律失常发生率为0.9%/年。从18个最具判别性的参数中,包括7个来自LV-LS的参数,经过n = 200轮交叉验证,最终模型的平均曲线下面积(AUC)为0.83±0.8,比传统模型具有更好的预测性能。结论自动提取左心室应变参数的机器学习模型在预测HCM患者持续性室性心律失常和SCD方面优于现有模型。包含LV-LS分析的机器学习模型可以改善HCM患者的SCD风险分层(图1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning model including left ventricular strain analysis for sudden cardiac death prediction in hypertrophic cardiomyopathy

Introduction

The excess mortality in HCM patients is mainly attributed to the occurrence of SCD. The prediction of ventricular arrhythmias remains challenging and could be improved. This study evaluated the added predictive value of a machine learning-based model combining clinical and conventional imaging parameters with information from left ventricular strain analysis to predict sudden cardiac death (SCD) in patients with hypertrophic cardiomyopathy (HCM).

Method

A total of 434 HCM patients (65% men, mean age 56 years) were retrospectively included from two referral centers (Oslo University Hospital, Rennes University Hospital) and followed longitudinally (mean duration 6 years). Mechanical and temporal parameters were automatically extracted from the left ventricle longitudinal strain (LV-LS) segmental curves of each patient and included in a Ridge Regression model alongside conventional clinical and imaging data. The composite endpoint included sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator therapy, aborted cardiac arrest, or sudden cardiac death (Fig. 1).

Results

Thirty-four patients (7.8%) met the endpoint with an incidence of ventricular arrhythmias of 0.9%/years. From a subset of 18 most discriminating parameters, including 7 derived from LV-LS, and after n = 200 rounds of cross-validation, the final model showed superior predictive performance compared to conventional models with a mean area under the curve (AUC) of 0.83 ± 0.8.

Conclusion

A machine learning model including automatically extracted left ventricular strain-derived parameters was superior in the prediction of sustained ventricular arrhythmias and SCD in patients with HCM compared to existing models. Machine learning model including LV-LS analysis could improve SCD risk stratification in HCM patients (Fig. 1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Cardiovascular Diseases Supplements
Archives of Cardiovascular Diseases Supplements CARDIAC & CARDIOVASCULAR SYSTEMS-
自引率
0.00%
发文量
508
期刊介绍: Archives of Cardiovascular Diseases Supplements is the official journal of the French Society of Cardiology. The journal publishes original peer-reviewed clinical and research articles, epidemiological studies, new methodological clinical approaches, review articles, editorials, and Images in cardiovascular medicine. The topics covered include coronary artery and valve diseases, interventional and pediatric cardiology, cardiovascular surgery, cardiomyopathy and heart failure, arrhythmias and stimulation, cardiovascular imaging, vascular medicine and hypertension, epidemiology and risk factors, and large multicenter studies. Additionally, Archives of Cardiovascular Diseases also publishes abstracts of papers presented at the annual sessions of the Journées Européennes de la Société Française de Cardiologie and the guidelines edited by the French Society of Cardiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信