外在对称子空间

IF 0.5 4区 数学 Q3 MATHEMATICS
J. Eschenburg, M. Tanaka
{"title":"外在对称子空间","authors":"J. Eschenburg, M. Tanaka","doi":"10.18910/76678","DOIUrl":null,"url":null,"abstract":"An extrinsic symmetric space is a submanifold M ⊂ V = Rn which is kept invariant by the reflection sx along every normal space NxM. An extrinsic symmetric subspace is a connected component M′ of the intersection M ∩ V ′ for some subspace V ′ ⊂ V which is sx-invariant for any x ∈ M′. We give an algebraic charactrization of all such subspaces V ′.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"57 1","pages":"655-661"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrinsic symmetric subspaces\",\"authors\":\"J. Eschenburg, M. Tanaka\",\"doi\":\"10.18910/76678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extrinsic symmetric space is a submanifold M ⊂ V = Rn which is kept invariant by the reflection sx along every normal space NxM. An extrinsic symmetric subspace is a connected component M′ of the intersection M ∩ V ′ for some subspace V ′ ⊂ V which is sx-invariant for any x ∈ M′. We give an algebraic charactrization of all such subspaces V ′.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"655-661\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/76678\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/76678","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

外对称空间是一个子流形M⊂V=Rn,它通过沿每个法线空间NxM的反射sx保持不变。一个外对称子空间是某个子空间V′⊂V的交集MåV′的连通分量M′,它对任何x∈M′都是sx不变的。我们给出了所有这样的子空间V′的代数性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extrinsic symmetric subspaces
An extrinsic symmetric space is a submanifold M ⊂ V = Rn which is kept invariant by the reflection sx along every normal space NxM. An extrinsic symmetric subspace is a connected component M′ of the intersection M ∩ V ′ for some subspace V ′ ⊂ V which is sx-invariant for any x ∈ M′. We give an algebraic charactrization of all such subspaces V ′.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信