{"title":"外在对称子空间","authors":"J. Eschenburg, M. Tanaka","doi":"10.18910/76678","DOIUrl":null,"url":null,"abstract":"An extrinsic symmetric space is a submanifold M ⊂ V = Rn which is kept invariant by the reflection sx along every normal space NxM. An extrinsic symmetric subspace is a connected component M′ of the intersection M ∩ V ′ for some subspace V ′ ⊂ V which is sx-invariant for any x ∈ M′. We give an algebraic charactrization of all such subspaces V ′.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"57 1","pages":"655-661"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrinsic symmetric subspaces\",\"authors\":\"J. Eschenburg, M. Tanaka\",\"doi\":\"10.18910/76678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extrinsic symmetric space is a submanifold M ⊂ V = Rn which is kept invariant by the reflection sx along every normal space NxM. An extrinsic symmetric subspace is a connected component M′ of the intersection M ∩ V ′ for some subspace V ′ ⊂ V which is sx-invariant for any x ∈ M′. We give an algebraic charactrization of all such subspaces V ′.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"655-661\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/76678\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/76678","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
An extrinsic symmetric space is a submanifold M ⊂ V = Rn which is kept invariant by the reflection sx along every normal space NxM. An extrinsic symmetric subspace is a connected component M′ of the intersection M ∩ V ′ for some subspace V ′ ⊂ V which is sx-invariant for any x ∈ M′. We give an algebraic charactrization of all such subspaces V ′.
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.